CFD Online Logo CFD Online URL
Home > Wiki > Kato-Launder modification

Kato-Launder modification

From CFD-Wiki

Revision as of 14:55, 8 December 2005 by Jola (Talk | contribs)
Jump to: navigation, search

The Kato-Launder modification is an ad-hoc modification of the turbulent production term in the k equation. The main purpose of the modification is to reduce the tendency that two-equation models have to over-predict the turbulent production in regions with large normal strain, i.e. regions with strong acceleration or decelleration.

The transport equation for the turbulent energy, k, used in most two-equation models can be written as:

\frac{\partial}{\partial t} \left( \rho k \right) +
\frac{\partial}{\partial x_j} 
 \rho k u_j - \left( \mu + \frac{\mu_t}{\sigma_k} \right) 
 \frac{\partial k}{\partial x_j}
P - \rho \epsilon - \rho D

Where P is the turbulent production normally given by:

P = \tau_{ij}^{turb} \frac{\partial u_i}{\partial x_j}

\tau_{ij}^{turb} is the turbulent shear stress tensor given by the Boussinesq assumption:

\tau_{ij}^{turb} \equiv 
- \overline{\rho u''_i u''_j} \approx
2 \mu_t S_{ij}^* - \frac{2}{3} \rho k \delta_{ij}

Where \mu_t is the eddy-viscosity given by the turbluence model and S_{ij}^* is the trace-less viscous strain-rate defined by:

S_{ij}^* \equiv
 \frac{1}{2} \left(\frac{\partial u_i}{\partial x_j} +
                \frac{\partial u_j}{\partial x_i} \right) -
                \frac{1}{3} \frac{\partial u_k}{\partial x_k} \delta_{ij}

In incompressible flows, where \frac{\partial u_i}{\partial x_i} = 0 the production term P can be rewritten as:

P = 
\tau_{ij}^{turb} \frac{\partial u_i}{\partial x_j} = 
2 \mu_t S_{ij}^* - \frac{2}{3} \rho k \delta_{ij} =
2 \mu_t \left( \frac{1}{2} \left(\frac{\partial u_i}{\partial x_j} +
 \frac{\partial u_j}{\partial x_i} \right) -
 \frac{1}{3} \frac{\partial u_k}{\partial x_k} \delta_{ij} \right)
 - \frac{2}{3} \rho k \delta_{ij}


Kato, M. and Launder, B. E. (1993), "The Modeling of Turbulent Flow Around Stationary and Vibrating Square Cylinders", Proc. 9th Symposium on Turbulent Shear Flows, Kyoto, August 1993, pp. 10.4.1-10.4.6.

My wiki