CFD Online Logo CFD Online URL
Home > Wiki > Parallel computing

Parallel computing

From CFD-Wiki

Revision as of 20:11, 4 December 2005 by Tsaad (Talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search



Ever heard of "Divide and Conquer"? Ever heard of "Together we stand, divided we fall"? This is the whole idea of parallel computing. A complicated CFD problem involving combustion, heat transfer, turbulence, and a complex geometry needs to be tackled. The way to tackle it is to divide it and then conquer it. The computers unite their efforts to stand up to the challenge!

Parallel computing is defined as the simultaneous use of more than one processor to execute a program. This formal definition holds a lot of intricacies inside. For instance, given a program, one cannot expect to run this program on a 1000 processors without any change to the original code. The program has to have instructions to guide it to run in parallel. Since the work is shared or distributed amongst "different" processors, data has to be exchanged now and then. This data exchange takes place using different methods depending on the type of parallel computer used. For example, using a network of PCs, a certain protocol has to be defined (or installed) to allow the data flow between PCs. The sections below describe some of the details involved.

Types of Parallel Computers

There are two fundamental types of parallel computers

  • A single computer with multiple internal processors, known as a Shared Memory Multiprocessor.
  • A set of computers interconnected through a network, known as a Distributed Memory Multicomputer.

Each of these can be referred to as a Parallel Computer. In this section we briefly discuss the architecture of the above systems.

Shared Memory Multiprocessor

A conventional computer consists of a processor and a memory readily accessible by any instruction the processor is executing. The shared memory multiprocessor is a natural extension of the single processor where multiple processors are connected to multiple memory modules such that each memory location has a single address space throughout the system. This means that any processor can readily have access to any memory location without any need for copying data from one memory to another.

Distributed Memory Multicomputer

Measuring Parallel Performance




Message Passing

Peer to Peer Communication



Collective Communication





My wiki