# Sample code for solving Lid-Driven cavity test (Re=1000) - Fortran 90

(Difference between revisions)
 Revision as of 18:48, 3 May 2010 (view source)Michail (Talk | contribs)← Older edit Revision as of 19:01, 3 May 2010 (view source)Michail (Talk | contribs) Newer edit → Line 31: Line 31: Structured orthogonal uniform grid is used (now). All variables are saved in array '''F(1:nx,1:ny,10)''' which mean that 2D array for 10 variables. Structured orthogonal uniform grid is used (now). All variables are saved in array '''F(1:nx,1:ny,10)''' which mean that 2D array for 10 variables. - Variables '''F(:,:,1)''' and '''F(:,:,2)''' represented U and V velocity components, and  '''F(:,:,4)'''represented pressure. '''F(:,:,3)''' represents pressure correction. + Variables '''F(:,:,1)''' and '''F(:,:,2)''' represented U and V velocity components, and  '''F(:,:,4)'''represented pressure. + + '''F(:,:,3)''' represents pressure correction. Arrays '''Xc''' and '''Yc''' represents the coordinates of the CV centres, and '''X''' and '''Y''' - coordinates of grids nodes Arrays '''Xc''' and '''Yc''' represents the coordinates of the CV centres, and '''X''' and '''Y''' - coordinates of grids nodes

## Revision as of 19:01, 3 May 2010

Dear friends

It's just a scrap. Later I'll correct it, although it's a complete working code -- Michail

Sample program for solving Lid-Driven Cavity Test using SIMPLE-algorithm Copyright (C) 2010 Michail Kiričkov ,Lithuania, Marijampole

This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.

Short description

In this program SIMPLE algorithm on colocated, regular and orthogonal grid is implemented.

Rhie-Chow interpolation is used.

Because it was primarily developing program for learning, there was implemented an output for all variables in the txt format as well as for TECPLOT format. Structured orthogonal uniform grid is used (now). All variables are saved in array F(1:nx,1:ny,10) which mean that 2D array for 10 variables.

Variables F(:,:,1) and F(:,:,2) represented U and V velocity components, and F(:,:,4)represented pressure.

F(:,:,3) represents pressure correction.

Arrays Xc and Yc represents the coordinates of the CV centres, and X and Y - coordinates of grids nodes

V - velocity distribution along X=0.5

U - velocity distribution along Y=0.5