CFD Online Logo CFD Online URL
www.cfd-online.com
[Sponsors]
Home > Wiki > Standard k-epsilon model

Standard k-epsilon model

From CFD-Wiki

(Difference between revisions)
Jump to: navigation, search
(Transport equations for standard <math>k</math>-<math>\epsilon</math> model)
(15 intermediate revisions not shown)
Line 1: Line 1:
-
== Transport Equation for standard k-epsilon model ==
+
{{Turbulence modeling}}
-
For k <br>
+
== Transport equations for standard k-epsilon model ==
-
<math>  \frac{\partial}{\partial t} (\rho k) + \frac{\partial}{\partial x_i} (\rho k u_i) = \frac{\partial}{\partial x_j} \left[ \left(\mu + \frac{\mu_t}{\sigma_k} \right) \frac{\partial k}{\partial x_j}\right] + P_k + P_b - \rho \epsilon - Y_M + S_k  </math>
+
 
 +
For turbulent kinetic energy <math> k </math> <br>
 +
:<math>  \frac{\partial}{\partial t} (\rho k) + \frac{\partial}{\partial x_i} (\rho k u_i) = \frac{\partial}{\partial x_j} \left[ \left(\mu + \frac{\mu_t}{\sigma_k} \right) \frac{\partial k}{\partial x_j}\right] + P_k + P_b - \rho \epsilon - Y_M + S_k  </math>
<br>
<br>
Line 8: Line 10:
<br>
<br>
-
<math>  
+
:<math>  
\frac{\partial}{\partial t} (\rho \epsilon) + \frac{\partial}{\partial x_i} (\rho \epsilon u_i) = \frac{\partial}{\partial x_j} \left[\left(\mu + \frac{\mu_t}{\sigma_{\epsilon}} \right) \frac{\partial \epsilon}{\partial x_j} \right] + C_{1 \epsilon}\frac{\epsilon}{k} \left( P_k + C_{3 \epsilon} P_b \right) - C_{2 \epsilon} \rho \frac{\epsilon^2}{k} + S_{\epsilon}
\frac{\partial}{\partial t} (\rho \epsilon) + \frac{\partial}{\partial x_i} (\rho \epsilon u_i) = \frac{\partial}{\partial x_j} \left[\left(\mu + \frac{\mu_t}{\sigma_{\epsilon}} \right) \frac{\partial \epsilon}{\partial x_j} \right] + C_{1 \epsilon}\frac{\epsilon}{k} \left( P_k + C_{3 \epsilon} P_b \right) - C_{2 \epsilon} \rho \frac{\epsilon^2}{k} + S_{\epsilon}
-
 
+
</math>
-
</math>
+
== Modeling turbulent viscosity ==
== Modeling turbulent viscosity ==
Turbulent viscosity is modelled as: <br>
Turbulent viscosity is modelled as: <br>
-
<math>
+
:<math>
\mu_t = \rho C_{\mu} \frac{k^2}{\epsilon}
\mu_t = \rho C_{\mu} \frac{k^2}{\epsilon}
</math>
</math>
-
<br>
 
-
 
-
 
-
 
== Production of k ==
== Production of k ==
-
<math>
+
:<math>
P_k = - \rho \overline{u'_i u'_j} \frac{\partial u_j}{\partial x_i}   
P_k = - \rho \overline{u'_i u'_j} \frac{\partial u_j}{\partial x_i}   
</math>
</math>
<br>
<br>
-
<math> P_k = \mu_t S^2 </math>
+
:<math> P_k = \mu_t S^2 </math>
Where <math> S </math> is the modulus of the mean rate-of-strain tensor, defined as : <br>
Where <math> S </math> is the modulus of the mean rate-of-strain tensor, defined as : <br>
-
<math>
+
:<math>
S \equiv \sqrt{2S_{ij} S_{ij}}  
S \equiv \sqrt{2S_{ij} S_{ij}}  
</math>
</math>
 +
== Effect of buoyancy ==
-
== Model Constants ==
+
:<math>
 +
P_b = \beta g_i \frac{\mu_t}{{\rm Pr}_t} \frac{\partial T}{\partial x_i}
 +
</math>
-
<math>
+
 
 +
<br>
 +
where Pr<sub>t</sub>  is the turbulent [[Prandtl number]] for energy and g<sub>i</sub>  is the component of the gravitational vector in the ith direction. For the standard and realizable -  models, the default value of Pr<sub>t</sub>  is 0.85.
 +
 
 +
The coefficient of thermal expansion, <math> \beta </math> , is defined as <br>
 +
:<math>
 +
\beta = - \frac{1}{\rho} \left(\frac{\partial \rho}{\partial T}\right)_p
 +
</math>
 +
 
 +
== Model constants ==
 +
 
 +
:<math>
C_{1 \epsilon} = 1.44, \;\; C_{2 \epsilon} = 1.92, \;\; C_{\mu} = 0.09, \;\; \sigma_k = 1.0, \;\; \sigma_{\epsilon} = 1.3  
C_{1 \epsilon} = 1.44, \;\; C_{2 \epsilon} = 1.92, \;\; C_{\mu} = 0.09, \;\; \sigma_k = 1.0, \;\; \sigma_{\epsilon} = 1.3  
</math>
</math>
 +
 +
 +
[[Category:Turbulence models]]

Revision as of 15:16, 21 June 2007

Turbulence modeling
Turbulence
RANS-based turbulence models
  1. Linear eddy viscosity models
    1. Algebraic models
      1. Cebeci-Smith model
      2. Baldwin-Lomax model
      3. Johnson-King model
      4. A roughness-dependent model
    2. One equation models
      1. Prandtl's one-equation model
      2. Baldwin-Barth model
      3. Spalart-Allmaras model
    3. Two equation models
      1. k-epsilon models
        1. Standard k-epsilon model
        2. Realisable k-epsilon model
        3. RNG k-epsilon model
        4. Near-wall treatment
      2. k-omega models
        1. Wilcox's k-omega model
        2. Wilcox's modified k-omega model
        3. SST k-omega model
        4. Near-wall treatment
      3. Realisability issues
        1. Kato-Launder modification
        2. Durbin's realizability constraint
        3. Yap correction
        4. Realisability and Schwarz' inequality
  2. Nonlinear eddy viscosity models
    1. Explicit nonlinear constitutive relation
      1. Cubic k-epsilon
      2. EARSM
    2. v2-f models
      1. \overline{\upsilon^2}-f model
      2. \zeta-f model
  3. Reynolds stress model (RSM)
Large eddy simulation (LES)
  1. Smagorinsky-Lilly model
  2. Dynamic subgrid-scale model
  3. RNG-LES model
  4. Wall-adapting local eddy-viscosity (WALE) model
  5. Kinetic energy subgrid-scale model
  6. Near-wall treatment for LES models
Detached eddy simulation (DES)
Direct numerical simulation (DNS)
Turbulence near-wall modeling
Turbulence free-stream boundary conditions
  1. Turbulence intensity
  2. Turbulence length scale

Contents

Transport equations for standard k-epsilon model

For turbulent kinetic energy  k

  \frac{\partial}{\partial t} (\rho k) + \frac{\partial}{\partial x_i} (\rho k u_i) = \frac{\partial}{\partial x_j} \left[ \left(\mu + \frac{\mu_t}{\sigma_k} \right) \frac{\partial k}{\partial x_j}\right] + P_k + P_b - \rho \epsilon - Y_M + S_k


For dissipation  \epsilon

 
\frac{\partial}{\partial t} (\rho \epsilon) + \frac{\partial}{\partial x_i} (\rho \epsilon u_i) = \frac{\partial}{\partial x_j} \left[\left(\mu + \frac{\mu_t}{\sigma_{\epsilon}} \right) \frac{\partial \epsilon}{\partial x_j} \right] + C_{1 \epsilon}\frac{\epsilon}{k} \left( P_k + C_{3 \epsilon} P_b \right) - C_{2 \epsilon} \rho \frac{\epsilon^2}{k} + S_{\epsilon}

Modeling turbulent viscosity

Turbulent viscosity is modelled as:


\mu_t = \rho C_{\mu} \frac{k^2}{\epsilon}

Production of k


P_k = - \rho \overline{u'_i u'_j} \frac{\partial u_j}{\partial x_i}


 P_k = \mu_t S^2

Where  S is the modulus of the mean rate-of-strain tensor, defined as :


S \equiv \sqrt{2S_{ij} S_{ij}}

Effect of buoyancy


P_b = \beta g_i \frac{\mu_t}{{\rm Pr}_t} \frac{\partial T}{\partial x_i}



where Prt is the turbulent Prandtl number for energy and gi is the component of the gravitational vector in the ith direction. For the standard and realizable - models, the default value of Prt is 0.85.

The coefficient of thermal expansion,  \beta , is defined as

 
\beta = - \frac{1}{\rho} \left(\frac{\partial \rho}{\partial T}\right)_p

Model constants


C_{1 \epsilon} = 1.44, \;\; C_{2 \epsilon} = 1.92, \;\; C_{\mu} = 0.09, \;\; \sigma_k = 1.0, \;\; \sigma_{\epsilon} = 1.3
My wiki