CFD Online Logo CFD Online URL
www.cfd-online.com
[Sponsors]
Home > Forums > Main CFD Forum

gravitational force for free surface flow

Register Blogs Members List Search Today's Posts Mark Forums Read

Reply
 
LinkBack Thread Tools Display Modes
Old   June 30, 2000, 20:10
Default gravitational force for free surface flow
  #1
Jongtae Kim
Guest
 
Posts: n/a
As a beginner to the free surface flows, I would like to ask your ideas. Currently I am studying two-layered natural convection. The materals are heavy metalic melts such as ferrite and allumina. The density ratio is more than two, so they separate by the gravitational force. As you can imagine, it is a kind of free surface flows. There are some codes to solve free surface flows like sola-vof and Ripple. Some say light material is neglected if density ratio is very high between two materials such as water and air. But it is possible to solve two materials at the same time no matter hwo the density ratio is.

In my case I should solve two materials for heat and momenta, but the interface between the two materials is assumed not changed. I am using my unstructured-mesh solver which is based on SIMPLE, Co-located(nonstaggered), Rhie-Chow interpolation.

The problem is how to treat gravitational body force. The book written by Peric said hydrostatic head is added to pressure therm. And it makes the computation more stable. I agree on that.

But if there are two different materials, I think it is impossible.

At first I used the gravitational source term as rho*g = rho_ref*[1- beta*(T-T_ref)]*g --(1) ,where hydrostatic head is not subtracted. When the eq (1) is used, I modified the boundary pressure extrapolation like p_b = p_o + rho*g*( x_b - x_o ). Except the problem with garvitational force boundary face pressure is same as boundary cell pressure.(Zero order extrapolation)

I didn't use free surface capturing schem, in other words I didn't solve VOF equation. I just fixed the interface. When the density ratio is near one I could get the solution to the two-layered natural convection. The materials are naturally stratified. But with the density ratio very larger than 1 it failed. So I simplified the problem by not solving energy equation. This is just hydrostatic problem, and exact solution is stationary flow with hydrostatic pressure field( p = rho*g*h ). The cells adjacent to interface have infinitesimal source of the difference between dp/dy and rho*g_y. This discrepancy is amplified and the code is diverged.

---------Oh. I am sorry, it is too long to explain my trouble. I would like to simplify my questions.

1) How to treat the gravitational body force and pressure gradient terms.

2) Is there a special way to integrate pressure gradient term in momentum equations(In case of non-staggered algorithm)

3) If you know some papers related two-layered free surface problem with non-staggered method, could you tell me them?

4) What is the initial pressure field for that? Some solved air, water and bubble interactions. I think it is very difficult to initialize the hydrostatic pressure field.

Currently I am studying the basics of the numerical methods for free surface. If you give me your idea, I can reduce the time to dig the problem. In advence I want to thank you for your forever kindness.

  Reply With Quote

Old   July 2, 2000, 11:57
Default Re: gravitational force for free surface flow
  #2
John C. Chien
Guest
 
Posts: n/a
(1). You have a natural convection problem, where the density of the liquid is not uniform. (2). If you ignore the shape of the free surface and the interface between two liquids, then you basically have two problems in two domains. (3). The interaction between the two problem is through the fixed interface surface. (4). What I would suggest is, solve it as coupled problem, each with uniform density (material). that is, a natural convection problem-A with heavy material on the bottom, and a given interface condition. And another natural convection problem with a light material on the top. (5). With this approach, the material will be uniform (not the density), and the boundary conditions are specified on the fixed given locations for each problem and domain. (6). You can used zero interface velocity boundary condition to simulate a real wall, or you can relax it to simulate the real interface condition.
  Reply With Quote

Reply

Thread Tools
Display Modes

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is Off
Trackbacks are On
Pingbacks are On
Refbacks are On


Similar Threads
Thread Thread Starter Forum Replies Last Post
Calculating forces on a non-closed surface ScottN FLUENT 0 March 1, 2011 18:18
Lift force coefficient for 2-phase flow Summer FLUENT 0 April 29, 2008 17:58
mass flow rate on the Iso-clip surface & interior Sunil Gupta FLUENT 0 April 22, 2008 09:29
drag force in two phase flow Ken CFX 5 November 21, 2005 16:28
Inviscid Drag at subsonic, subcritical Mach # Axel Rohde Main CFD Forum 1 November 19, 2001 13:19


All times are GMT -4. The time now is 14:05.