# Applying boundary conditions to 1D Steady Convection Diffusion using Power Law Scheme

 Register Blogs Members List Search Today's Posts Mark Forums Read

 January 5, 2012, 20:47 Applying boundary conditions to 1D Steady Convection Diffusion using Power Law Scheme #1 New Member   Join Date: Jan 2012 Posts: 1 Rep Power: 0 I am currently trying to solve the convection diffusion problem for Phip(centre of node) utilising the power law scheme but have come unstuck in determining the co-efficients(ae, aw, Su, Sp) at the boundaries i.e the first and last nodes. The form utilised is following the Versteeg CFD Textbook 1995, and the co-efficients are given for only the central nodes: ap*Phip=ae*Phie+aw*Phiw+Su ap=aw+ae-Sp For instance for the central differencing scheme at the 1st node: aw=0, ae=D-F/2, Sp=-(2D+F), Su=(2D+F)*Phi0. Where D=DiffusionCoeff/dx and F=rho*u I have written a TDMA solver in matlab that is currently working for the central differencing, upwind and hybrid schemes, this is the last one and I'm losing my mind! Any help would be greatly appreciated! Regards Rastaman

January 7, 2012, 17:40
#2
Senior Member

Join Date: Aug 2011
Posts: 251
Rep Power: 8
Quote:
 Originally Posted by ConvDiff I am currently trying to solve the convection diffusion problem for Phip(centre of node) utilising the power law scheme but have come unstuck in determining the co-efficients(ae, aw, Su, Sp) at the boundaries i.e the first and last nodes. The form utilised is following the Versteeg CFD Textbook 1995, and the co-efficients are given for only the central nodes: ap*Phip=ae*Phie+aw*Phiw+Su ap=aw+ae-Sp For instance for the central differencing scheme at the 1st node: aw=0, ae=D-F/2, Sp=-(2D+F), Su=(2D+F)*Phi0. Where D=DiffusionCoeff/dx and F=rho*u I have written a TDMA solver in matlab that is currently working for the central differencing, upwind and hybrid schemes, this is the last one and I'm losing my mind! Any help would be greatly appreciated! Regards Rastaman
Hi,
Once you have been able to compute all the coefficients for every nodes (I mean AP, AW, AE and SU) if your TDMA solver works for the other schemes (central, upwind and hybrid) it should work as well with powerlaw scheme.

Another point is that the BC do not depend on the discretizing scheme at least only on the way to implement them.
If the scheme you use is based on 3 points, W, P and E at most, the way you have implemented the BC for central or upwind will not change for powerlaw.
The scheme which is used only change the coefficients. That"s all.
What you have done according Versteeg seems correct..
Jah guide !

 Thread Tools Display Modes Linear Mode

 Posting Rules You may not post new threads You may not post replies You may not post attachments You may not edit your posts BB code is On Smilies are On [IMG] code is On HTML code is OffTrackbacks are On Pingbacks are On Refbacks are On Forum Rules

 Similar Threads Thread Thread Starter Forum Replies Last Post shahpar73 CFX 1 October 4, 2010 18:06 Mark CFX 6 November 15, 2004 16:55 Tudor Miron CFX 15 April 2, 2004 06:18 Tudor Miron CFX 17 March 19, 2004 20:23 Chetan Kadakia FLUENT 3 August 22, 2000 04:51

All times are GMT -4. The time now is 20:45.