CFD Online Logo CFD Online URL
www.cfd-online.com
[Sponsors]
Home > Forums > Main CFD Forum

Implicit method for Navier Stokes equations

Register Blogs Members List Search Today's Posts Mark Forums Read

Reply
 
LinkBack Thread Tools Display Modes
Old   January 6, 2012, 09:47
Default Implicit method for Navier Stokes equations
  #1
New Member
 
Vasiliy
Join Date: Feb 2011
Posts: 9
Rep Power: 5
Vasiliy is on a distinguished road
Hi All,

I construct implicit solver for Navier Stokes equations.
I use Roe method to calculate explicit fluxes.

My question is about convective and viscous Jacobians in implicit part.
I was told that some of such Jacobians can be excluded from large sparse matrix to accelerate convergence.

It is not connected with technic where viscous Jacobian is changed with spectral radius.

It looks like some of Jacobians are fully removed to accelerate convergence.

Does anybody have information about such algorithms?

Thanks
Vasiliy is offline   Reply With Quote

Old   January 6, 2012, 12:41
Default
  #2
agd
Senior Member
 
Join Date: Jul 2009
Posts: 176
Rep Power: 7
agd is on a distinguished road
Are you referring to something like this?

http://www.sciencedirect.com/science...2199918190156X

If so, try googling "pulliam diagonalized". Thomas Pulliam is the guy who has put a lot of developmental effort into such schemes. You should be able to find quite a bit of information on the internet.
agd is offline   Reply With Quote

Old   January 6, 2012, 15:50
Default
  #3
Senior Member
 
Martin Hegedus
Join Date: Feb 2011
Posts: 380
Rep Power: 7
Martin Hegedus is on a distinguished road
Are you referring to implicit calculations for structured grids? I don't consider myself an expert, but here is how I see it.

There are four AF (approximate factorization) groups. The idea of an AF method is to simplify the matrix inversion by means of approximations.
ADI (Alternating Direction Implicit)
DADI (Diagonalized Alternating Direction Implicit) The Pulliam Chaussee method is in this class
DDADI (Diagonal Dominant ADI)
D3ADI (Diagonalized ADI)

These methods are explained in "Convernce Characteristics of Approximate Factorization Methods" T.H. Pulliam, R.W. MacCormack, and S. Venkateswaren. I've not seen a free version of this paper on the net, in which case you'll need to pick it up from your local university library. http://www.springerlink.com/content/m47333088p634u60/

The idea behind DADI is to solve for the eigenvalues of the Euler Jacobians. This creates a pentadiagonal matrix which is faster to solve than the tridiagonal block matrix solver required by the ADI method. However, due to factorization error, the DADI method has a CFL penalty compared to the ADI method for certain grid topologies and flow conditions. http://www.hegedusaero.com/examples/...ifiedDADI.html

The DADI is also not time accurate, so it should be used with a subiteration approach for time accuracy. However, IMO, the ADI method should also be used with a subiteration approach for time accuracy.

Both the ADI and DADI are not diagonally dominant for large CFL or dt numbers, therefore they will bomb with very large CFL values. Usually a CFL between 10 and 20 gives you max convergence rate.

In theory, any CFL value can be used with the DDADI and D3ADI methods. However, larger CFL values do not necessarily mean faster convergence rates.
Martin Hegedus is offline   Reply With Quote

Old   January 12, 2012, 07:43
Smile Help please
  #4
New Member
 
Abhishek Chintagunta
Join Date: Jan 2012
Posts: 2
Rep Power: 0
klik24 is on a distinguished road
Hi Vasily,

I am developing the same code for unstructured grids. Can you help me about the implementation of Boundary conditions ? (Any paper or book would do) I think I did not look properly.

Thank you for your help.

Sorry about asking a question for your question.

Regards,
Abhishek
klik24 is offline   Reply With Quote

Old   January 12, 2012, 08:05
Default Refer Yoon Jameson Paper
  #5
New Member
 
Vinayender
Join Date: Jul 2009
Location: India
Posts: 24
Rep Power: 7
vinayender is on a distinguished road
Vasiliy ,

Please refer "AIAA 86 0105"
"LU Implicit Schemes with Multiple Grids for the Euler Equations"
by
A.Jameson and S.Yoon
Princeton Univ., Princeton, NJ

Paper.

for Implicit equation, of form
(1/del_t - del_R/del_U) delt_U ) = R(U_n)
Right hand side is imprortant because it is the governing physiscs and for steady problems LHS is just numerics. so its accuracy is not important.
so for LHS you use only a very quick schems which refered in the paper said above......refer it
__________________
Thanks ,
Vinayender
vinayender is offline   Reply With Quote

Old   January 12, 2012, 08:11
Default Abhishek
  #6
New Member
 
Vinayender
Join Date: Jul 2009
Location: India
Posts: 24
Rep Power: 7
vinayender is on a distinguished road
Abhishek,
if you are implementing a density based solver, you can refer "Computational Gas Dynamics " by Laney

and also a book "Computational Fluid dynamics: principles and applications" by Jiri Blazek
__________________
Thanks ,
Vinayender
vinayender is offline   Reply With Quote

Old   January 12, 2012, 08:32
Default
  #7
New Member
 
Abhishek Chintagunta
Join Date: Jan 2012
Posts: 2
Rep Power: 0
klik24 is on a distinguished road
Dear Vinay,

I have already finished coding the entire Implicit algorithm for unstructured grids based on Roe scheme (upwind). But I am having a difficulty applying boundary conditions (to be specific calculating Convective Flux Jacobian at boundaries specifically Wall, Symmetry) in the implicit operator. I am trying to solve the system using a Newtons method. My code is based on an explicit code I previously developed. Any paper or book suggestion is highly appreciated.

Kind Regards,
Abhishek
klik24 is offline   Reply With Quote

Old   January 13, 2012, 00:45
Default Ghost Cell or Half Volume construction
  #8
New Member
 
Vinayender
Join Date: Jul 2009
Location: India
Posts: 24
Rep Power: 7
vinayender is on a distinguished road
Hi Abhishek,

There are few procedures to calculate the fluxes on wall (same with little different for symmetric bc)
1) construction of ghost cell

1) Construction of ghost cell, you can assume a ghost cell in the wall region of same volume jsut opposite to the real cell and define the properties of that cell as same values other than for velocities. velocity compenets can be calculated such that the net mass flux at the wall ( the interior face between real cell and ghost cell) is zero..
values of real cell at wall can be rho, p, temperature, u and v
values of ghost cell at the wall can be rho, p, temperature, u_ghost and v_ghost
u_ghost and v_ghost can be calculated using 2 relations. 1 is normal mass flux is zero and 2nd is wall tangential velocity is 0 for wall and tangential velocities a finite one for symmetric bc)
Now flux at wall can be caculated at the face (which is between real and ghost cell) like you calculate for any other interior face......
__________________
Thanks ,
Vinayender
vinayender is offline   Reply With Quote

Old   January 13, 2012, 00:50
Default got wrong ?
  #9
New Member
 
Vinayender
Join Date: Jul 2009
Location: India
Posts: 24
Rep Power: 7
vinayender is on a distinguished road
Hi Abhishek,

i guess i got your question wrong.. let me get back to you
__________________
Thanks ,
Vinayender
vinayender is offline   Reply With Quote

Old   December 3, 2012, 13:07
Default
  #10
New Member
 
Vasiliy
Join Date: Feb 2011
Posts: 9
Rep Power: 5
Vasiliy is on a distinguished road
Hi Everybody,

Thanks for previous help.
I have implemented Weiss and Smith precondition.
It works fine for laminar flows but I have slow convergence for turbulent flows.
It looks like there is method to improve convergence of turbulent flows. I saw it in some hard code results (Fluent for example). My current task is to minimize number of Navier-Stokes iterations.
Does anybody know such methods?

Thanks
Vasiliy is offline   Reply With Quote

Reply

Thread Tools
Display Modes

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is Off
Trackbacks are On
Pingbacks are On
Refbacks are On


Similar Threads
Thread Thread Starter Forum Replies Last Post
4th order Runge-Kutte & uncoupled method Navier Stokes equations misabel Main CFD Forum 0 February 10, 2010 06:06
Navier Stokes equations in rotation frame..? vinayender Main CFD Forum 2 December 1, 2009 00:12
Laplace or Stokes equations solver by Boundary Elements Method Lemonnier Main CFD Forum 3 December 28, 1999 13:48
Unstructured Multigrid Method for Euler equations Jian Xia Main CFD Forum 8 December 20, 1999 12:31
Computational complexity of Navier Stokes equations Marco Ellero Main CFD Forum 5 May 5, 1999 21:07


All times are GMT -4. The time now is 23:14.