CFD Online Logo CFD Online URL
www.cfd-online.com
[Sponsors]
Home > Forums > Software User Forums > OpenFOAM

Tomiyama wall lubrication force

Register Blogs Community New Posts Updated Threads Search

 
 
LinkBack Thread Tools Search this Thread Display Modes
Prev Previous Post   Next Post Next
Old   December 9, 2010, 07:58
Default Tomiyama wall lubrication force
  #1
Edy
Member
 
Join Date: Sep 2010
Posts: 35
Rep Power: 15
Edy is on a distinguished road
Hi Foamers,

I am developing a Euler-Euler solver for two-phase flow. For the moment I only consider an adiabatic case and no interfacial area concentration transport equation (IACTE). [At a later stage, I will implement boiling and IATCE but this is not my goal right now]

I implemented the following interfacial forces :
- Ishii Zuber drag
- Zuber virtual mass
- Gosman (Favre averaged) turbulent dispersion
- Tomiyama lift
- Tomiyama wall lubrication

My case is based on the DEDALE experiment performed at EDF, which consists of a upwards water flow in a vertical pipe, in which is injected gas bubbles. No heating is applied. I even makes it simpler cause i consider basically a 2D channel instead of a 3D pipe.

However, my wall lubrication force seems to be wrong cause for 0.6 mm diameter bubbles, i do not observe wall peaking (the void fraction is maximum at the wall, like if the wall lubrication force was not big enough to countereffect the lift). Then I tried to run a new simulation for 2mm diameter bubbles and my code crashed after 0.002s of simulation, the wall lubrication force had tremendously increased and made the gas velocity explode (500 m/s).

I am a bit confused about this Tomiyama wall lubrication force. Concerning the relative velocity which is needed for its calculation, is it the relative velocity for each local cell, or at the centerline location? Should it be the total magnitude of the relative velocity or only the part in the flow direction?

Here is what I implemented for this force :

Code:
volScalarField AWallLubrication = wallLubricationa->AWL(alpha,DS,magUr);  //calls a

volVectorField wallLubricationForce = AWallLubrication*(1/pow(distToWall,2)-1/pow(D-distToWall,2))*normal

// I checked distToWall and D (the pipe diameter) and these fields are OK so the pb might be in AWL
The function AWL is defined in the Tomiyama wall lubrication class as following :

Code:
dimensionedScalar g
    (
        "g",
        dimensionSet(0, 1, -2, 0, 0, 0, 0),
        scalar (9.81)
    );

    volScalarField Eo = mag(g)*(phaseb_.rho()-phasea_.rho())*pow(DS,2.0)/phaseb_.sig();
    volScalarField CwlEo = exp(-0.933*Eo+0.179);

    forAll(Eo, celli)
    {
        if (Eo[celli] < 1.0)
        {
            CwlEo[celli] = 0.47;
        }
        else if (Eo[celli] >= 1.0 && Eo[celli] <= 5.0)
        {
            CwlEo[celli] = exp(-0.933*Eo[celli]+0.179);
        }
        else if (Eo[celli] > 5.0 && Eo[celli] <= 33.0)
        {
            CwlEo[celli] = 0.00599*Eo[celli]-0.0187;
        }
        else if (Eo[celli] > 33.0)
        {
            CwlEo[celli] = 0.179;
        }
    }

    return 0.5*CwlEo*phaseb_.rho()*pow(Ur,2.0)*DS;  //DS is the bubble diameter

Has anyone already implemented Tomiyama wall lubrication force? Or see what might be wrong in my implementation? Any other idea, suggestion is welcome.

Thanks in advance.
Best,


/Edy
Edy is offline   Reply With Quote

 


Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is Off
Trackbacks are Off
Pingbacks are On
Refbacks are On


Similar Threads
Thread Thread Starter Forum Replies Last Post
[Commercial meshers] Fluent3DMeshToFoam simvun OpenFOAM Meshing & Mesh Conversion 50 January 19, 2020 15:33
Centrifugal force/ Rotating Wall david FLUENT 4 January 2, 2014 06:30
Question about bcdefw.f for wall temperature bc. Jimmy Siemens 10 March 18, 2008 15:28
Whay exactly is Wall Force in StarCD? Torsten Schenkel Siemens 2 September 10, 2003 03:29
Wall Shear Force Bo B. B. Jensen Main CFD Forum 3 January 28, 2000 17:48


All times are GMT -4. The time now is 06:21.