CFD Online Logo CFD Online URL
www.cfd-online.com
[Sponsors]
Home > Forums > Software User Forums > Siemens > STAR-CCM+

Issues with an attempt to model an inline tube bank

Register Blogs Community New Posts Updated Threads Search

 
 
LinkBack Thread Tools Search this Thread Display Modes
Prev Previous Post   Next Post Next
Old   October 12, 2011, 08:01
Default Issues with an attempt to model an inline tube bank
  #1
New Member
 
Andrew Muharib
Join Date: Aug 2011
Posts: 3
Rep Power: 14
A Muharib is on a distinguished road
Hi all I am very new to using STAR CCM+ and was wondering if some one could help me with my dilemma. I have both a Hi and Low Re meshes designed to model flow through a 2x2 inline tube bank. I am modelling the turbulent flow through the 3-D system by including periodic boundaries on x, y and z directions. Essentially trying to observe the pressure, coefficient of pressure, and nusselt number around the central tube. The model description is presented below:
Model Considered -
Constant Density
Gas - Air
High y+ wall treatment
Implicit Unsteady
RANS

Reynolds Stress Model
Quadratic Pressure Strain (which is the same as SSG)
Segregated Flow and Fluid Temperature
Three Dimensional
Turbulent


Air properties:
Density = 1.0
Dynamic viscosity = 2.43902439 x10-5 (1/Reynolds number) and Re = 41,000
Specific heat = 1009
Thermal conductivity = 0.0024609756 (viscosity x specific heat)
Turbulent Prandtl Number = 1.0

Initial conditions:
Pressure = 0.0
Static temperature = 500K
Turbulence intensity = 0.03
Turbulent velocity scale = 1.0
Turbulent Viscosity ratio = 10
Velocity = 1.0

Reference Values:
Min allowable wall distance = 1.0 x 10-6
Min allowable temp = -500 k ( I know this is completely unrealistic however I am using temperature as a passive scalar so it really has no knock on effect to the density and rest of the calculation)
Max allowable temp = 5000k
Reference Pressure = 0.0


I am struggling with a few problems:

1) Defining the correct stopping criteria and time step for the implicit unsteady solver.

2) I have managed to simulate pressure differences with the simulations I have run so far, however I cannot seem to get the nusselt number plots to work correctly i.e. I get nothing.

3) I am essentially trying to model an inline tube bank, hence the periodic boundaries. I have set the y and z - periodic boundaries with a zero pressure jump. Yet the x - direction periodic boundary has been defined with a mass flow rate of 0.12 kg/s in order to drive the flow. I was wondering if this approach was correct.

Any help would be greatly appreciated. Thank you.
A Muharib is offline   Reply With Quote

 


Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is Off
Trackbacks are Off
Pingbacks are On
Refbacks are On


Similar Threads
Thread Thread Starter Forum Replies Last Post
Use of k-epsilon and k-omega Models Jade M Main CFD Forum 40 January 27, 2023 07:18
Continuing User Defined Real Gas Model issues aeroman FLUENT 6 April 8, 2016 03:34
Wrong calculation of nut in the kOmegaSST turbulence model FelixL OpenFOAM Bugs 27 March 27, 2012 09:02
Low Reynolds k-epsilon model YJZ ANSYS 1 August 20, 2010 13:57
2 stage axial turbine model convergence issues sherifkadry CFX 2 September 7, 2009 20:51


All times are GMT -4. The time now is 06:05.