CFD Online Logo CFD Online URL
www.cfd-online.com
[Sponsors]
Home > Wiki > Code: Lid driven cavity using pressure free velocity form

Code: Lid driven cavity using pressure free velocity form

From CFD-Wiki

(Difference between revisions)
Jump to: navigation, search
(Lid-driven cavity code, description to follow.)
(12 intermediate revisions not shown)
Line 1: Line 1:
-
Lid-driven cavity using pressure-free velocity formulation
+
==Lid-driven cavity using pressure-free velocity formulation==
 +
This sample code uses four-node simple-cubic finite elements and simple iteration.
 +
 +
===Theory===
 +
The incompressible Navier-Stokes equation is a differential algebraic equation, having the inconvenient feature that there is no explicit mechanism for advancing the pressure in time. Consequently, much effort has been expended to eliminate the pressure from all or part of the computational process. We show a simple, natural way of doing this.
 +
 +
The incompressible Navier-Stokes equation is composite, the sum of two orthogonal equations,
 +
:<math>\frac{\partial\mathbf{v}}{\partial t}=\Pi^S(-\mathbf{v}\cdot\nabla\mathbf{v}+\nu\nabla^2\mathbf{v})+\mathbf{f}^S </math>,
 +
:<math>\rho^{-1}\nabla p=\Pi^I(-\mathbf{v}\cdot\nabla\mathbf{v}+\nu\nabla^2\mathbf{v})+\mathbf{f}^I </math>,
 +
where <math>\Pi^S</math> and <math>\Pi^I</math> are solenoidal and irrotational projection operators satisfying <math>\Pi^S+\Pi^I=1</math> and
 +
<math>\mathbf{f}^S</math> and <math>\mathbf{f}^I</math> are the nonconservative and conservative parts of the body force. This result follows from the Helmholtz Theorem . The first equation is a pressureless governing equation for the velocity, while the second equation for the pressure is a functional of the velocity and is related to the pressure Poisson equation. The explicit functional forms of the projection operator in 2D and 3D are found from the Helmholtz Theorem, showing that these are integro-differential equations, and not particularly convenient for numerical computation.
 +
 +
Equivalent weak or variational forms of the equations, proved to produce the same velocity solution as the Navier-Stokes equation are
 +
:<math>(\mathbf{w},\frac{\partial\mathbf{v}}{\partial t})=-(\mathbf{w},\mathbf{v}\cdot\nabla\mathbf{v})-\nu(\nabla\mathbf{w}: \nabla\mathbf{v})+(\mathbf{w},\mathbf{f}^S)</math>,
 +
:<math>(\mathbf{g}_i,\nabla p)=-(\mathbf{g}_i,\mathbf{v}\cdot\nabla\mathbf{v}_j)-\nu(\nabla\mathbf{g}_i: \nabla\mathbf{v}_j)+(\mathbf{g}_i,\mathbf{f}^I)\,</math>,
 +
 +
for divergence-free test functions <math>\mathbf{w}</math> and irrotational test functions <math>\mathbf{g}</math> satisfying appropriate boundary conditions. Here, the projections are accomplished by the orthogonality of the solenoidal and irrotational function spaces. The discrete form of this is emminently suited to finite element computation of divergence-free flow.
 +
 +
In the discrete case, it is desirable to choose basis functions for the velocity which reflect the essential feature of incompressible flow &mdash; the velocity elements must be divergence-free. While the velocity is the variable of interest, the existence of the stream function or vector potential is necessary by the Helmholtz Theorem. Further, to determine fluid flow in the absence of a pressure gradient, one can specify the difference of stream function values across a 2D channel, or the line integral of the tangential component of the vector potential around the channel in 3D, the flow being given by Stokes' Theorem. This leads naturally to the use of Hermite stream function (in 2D) or velocity potential elements (in 3D).
 +
 +
Involving, as it does, both stream function and velocity degrees-of-freedom, the method might be called a '''velocity-stream function''' or '''stream function-velocity''' method.
 +
 +
We now restrict discussion to 2D continuous Hermite finite elements which have at least first-derivative degrees-of-freedom. With this, one can draw a large number of candidate triangular and rectangular elements from the plate-bending literature. These elements have derivatives as components of the gradient. In 2D, the gradient and curl of a scalar are clearly orthogonal, given by the expressions,
 +
:<math>\nabla\phi = \left[\frac{\partial \phi}{\partial x},\,\frac{\partial \phi}{\partial y}\right]^T, \quad
 +
\nabla\times\phi = \left[\frac{\partial \phi}{\partial y},\,-\frac{\partial \phi}{\partial x}\right]^T. </math>
 +
 +
Adopting continuous plate-bending elements, interchanging the derivative degrees-of-freedom and changing the sign of the
 +
appropriate one gives many families of stream function elements.
 +
 +
Taking the curl of the scalar stream function elements gives divergence-free velocity elements [1][2]. The requirement that the stream function elements be continuous assures that the normal component of the velocity is continuous across element interfaces, all that is necessary for vanishing divergence on these interfaces.
 +
 +
Boundary conditions are simple to apply. The stream function is constant on no-flow surfaces, with no-slip velocity conditions on surfaces. Stream function differences across open channels determine the flow. No boundary conditions are necessary on open boundaries [1], though consistent values may be used with some problems. These are all Dirichlet conditions.
 +
 +
The algebraic equations to be solved are simple to set up, but of course are non-linear, requiring iteration of the linearized equations.
 +
 +
The finite elements we will use here are apparently due to Melosh [3], but can also be found in Zienkiewitz [4]. These simple cubic-complete elements have three degrees-of-freedom at each of the four nodes. In the sample code we use this Hermite element for the pressure, and the modified form obtained by interchanging derivatives and the sign of one of them (though a simple bilinear element could be used for the pressure as well). The degrees-of-freedom are the pressure and pressure gardient, and the stream function and components of the solenoidal velocity for the modified element. The normal component of the velocity is continuous at element interfaces as is required, but the tangential velocity component may not be continuous.
 +
 +
The code implementing the lid-driven cavity problem is written for Matlab. The script below is problem-specific, and calls problem-independent functions to evaluate the element diffusion and convection matricies and evaluate the pressure from the resulting velocity field. These three functions accept general quadrilateral elements with straight sides as well as the rectangular elements used here. Other functions are a GMRES iterative solver using ILU preconditioning and incorporating the essential boundary conditions, and a function to produce non-uniform nodal spacing for the problem mesh.
 +
 +
This "educational code" is a simplified version of the code used in [1]. The user interface is the code itself. The user can experiment with changing the mesh, the Reynolds number, and the number of nonlinear iterations performed, as well as the relaxation factor. There are suggestions in the code regarding near-optimum choices for this factor as a function of Reynolds number. These values are given in the paper as well. For larger Reynolds numbers, a smaller relaxation factor speeds up convergence by smoothing the velocity factor <math>(\mathbf{v}\cdot\nabla)</math>  in the convection term, but will impede convergence if made too small.
 +
 +
The output consists of graphic plots of contour levels of the stream function and the pressure levels.
 +
 +
This simplified version for this Wiki resulted from removal of computation of the vorticity, a restart capability, area weighting for the error, and production of publication-quality plots from one of the research codes used with the paper.
 +
 +
===Lid-driven cavity Matlab script===
<pre>
<pre>
%LDCW            LID-DRIVEN CAVITY  
%LDCW            LID-DRIVEN CAVITY  
Line 41: Line 86:
% Parameters for GMRES solver  
% Parameters for GMRES solver  
GMRES.Tolerance=1.e-14;
GMRES.Tolerance=1.e-14;
-
GMRES.MaxIterates=20;  
+
GMRES.MaxIterates=15;  
GMRES.MaxRestarts=6;
GMRES.MaxRestarts=6;
Line 65: Line 110:
%    DEFINE THE MESH   
%    DEFINE THE MESH   
% Set number of elements in each direction
% Set number of elements in each direction
-
NumEx = 16;  NumEy = NumEx;
+
NumEx = 18;  NumEy = NumEx;
% PLEASE CHANGE OR SET NUMBER OF ELEMENTS TO CHANGE/SET NUMBER OF NODES!
% PLEASE CHANGE OR SET NUMBER OF ELEMENTS TO CHANGE/SET NUMBER OF NODES!
Line 81: Line 126:
% Number of nonlinear iterations
% Number of nonlinear iterations
-
MaxNLit=10; %
+
MaxNLit=20; %
%--------------------------------------------------------
%--------------------------------------------------------
Line 152: Line 197:
       ni=ni+1;                  %  |________|
       ni=ni+1;                  %  |________|
       NodNdx(:,ni)=[nx;ny];
       NodNdx(:,ni)=[nx;ny];
-
       nf=nf+nd;              % all nodes have 4 dofs  
+
       nf=nf+nd;              % all nodes have 3 dofs  
       nn2nft(:,ni)=[nf;nt];  % dof number & type (all nodes type 1)
       nn2nft(:,ni)=[nf;nt];  % dof number & type (all nodes type 1)
   end;
   end;
Line 418: Line 463:
   num2str(etime(clock,ETstart)/60) ' min']); % Elapsed time from start <<<
   num2str(etime(clock,ETstart)/60) ' min']); % Elapsed time from start <<<
</pre>
</pre>
-
<pre>
 
-
function [Dm,RowNdx,ColNdx]=DMatW(Xe,Elcon,nn2nft)
 
-
%DMATW - Returns the affine-mapped element diffusion matrix for the simple cubic Hermite
 
-
%  basis functions on 4-node straight-sided quadrilateral elements with 3 DOF
 
-
%  per node using Gauss quadrature on the reference square and row/col indices.
 
-
%
+
===[[PFV diffusion matrix | Diffusion matrix for pressure-free velocity method ('''DMatW.m''')]]===
-
% Cubic-complete, fully-conforming, divergence-free, Hermite basis
+
-
%  functions on 4-node rectangular elements with 3 DOF per node using
+
-
%  Gauss quadrature on the 2x2 reference square.  
+
-
% The assumed nodal numbering starts with 1 at the lower left corner
+
-
%  of the element and proceeds counter-clockwise around the element.
+
-
% Uses second derivatives of stream function.
+
-
%
+
-
% Usage:
+
-
%  [Dm,Rndx,Cndx] = DMatW(Xe,Elcon,nn2nft)
+
-
%  Xe(1,:) -  x-coordinates of corner nodes of element. 
+
-
%  Xe(2,:) -  y-coordinates of corner nodes of element. 
+
-
%      and shape of the element. It is constant for affine elements.
+
-
%  Elcon  - connectivity matrix for this element.
+
-
%  nn2nft - global number and type of DOF at each node
+
-
%
+
-
% Jonas Holdeman, August 2007, revised June 2011
+
-
% Constants and fixed data
+
===[[PFV convection matrix | Convection matrix for pressure-free velocity method ('''CMatW.m''')]]===
-
nd = 3;  nd4=4*nd;  ND=1:nd;  % nd = number of dofs per node,
+
-
nn=[-1 -1; 1 -1; 1 1; -1 1];  % defines local nodal order
+
-
% Define 4-point quadrature data once, on first call.
+
===[[PFV get pressure | Consistent pressure for pressure-free velocity method ('''GetPresW.m''')]]===
-
% Gaussian weights and absissas to integrate 7th degree polynomials exactly.
+
-
global GQ4;
+
-
if (isempty(GQ4))      % Define 4-point quadrature data once, on first call.
+
-
  Aq=[-.861136311594053,-.339981043584856,.339981043584856, .861136311594053]; %Abs
+
-
  Hq=[ .347854845137454, .652145154862546,.652145154862546, .347854845137454]; %Wts
+
-
  GQ4.size=16; GQ4.xa=[Aq;Aq;Aq;Aq]; GQ4.ya=GQ4.xa';
+
-
  wt=[Hq;Hq;Hq;Hq]; GQ4.wt=wt.*wt';
+
-
end
+
-
xa=GQ4.xa; ya=GQ4.ya; wt=GQ4.wt; Nq=GQ4.size;
+
===[[PFV GMRES solver| GMRES solver with ILU preconditioning and Essential BC ('''ilu_gmres_with_EBC.m''')]]===
-
% -----------------------------------------------
+
===[[PFV mesh regrade | Grade node spacing ('''regrade.m''')]]===
-
global Zs3412d2; 
+
-
if (isempty(Zs3412d2)|size(Zs3412d2,2)~=Nq)
+
-
% Evaluate and save/cache the set of shape functions at quadrature pts.  
+
-
  Zs3412d2=cell(4,Nq)
+
-
    for k=1:Nq
+
-
      for m=1:4
+
-
      Zs3412d2{m,k}=D3s(nn(m,:),xa(k),ya(k));
+
-
      end
+
-
  end
+
-
end  % if(isempty(*))
+
-
% --------------- End fixed data ----------------
+
-
Ti=cell(4);
+
==references==
-
 
+
[1] {{reference-paper |author = Holdeman, J. T. |year = 2010 | title = A Hermite finite element method for incompressible fluid flow | rest = Int. J. Numer. Meth. Fluids, '''64''': 376-408 }}
-
for m=1:4
+
-
  Jt=Xe*GBL(nn(:,:),nn(m,1),nn(m,2));  % transpose of Jacobian at node m
+
-
  JtiD=[Jt(2,2),-Jt(1,2); -Jt(2,1),Jt(1,1)];  % det(J)*inv(Jt)
+
-
  Ti{m}=blkdiag(1,JtiD); 
+
-
end
+
-
% Move Jacobian evaluation inside k-loop for general convex quadrilateral.
+
[2] {{reference-paper |author = Holdeman, J. T. and Kim, J.W. |year = 2010 | title = Computation of incompressible thermal flows using Hermite finite elements | rest = Comput. Methods Appl. Mech. Engr., '''199''': 3297-3304 }}
-
% Jt=[x_q, x_r; y_q, y_r];
+
-
Dm=zeros(nd4,nd4); Sx=zeros(2,nd4); Sy=zeros(2,nd4);  % Pre-allocate arrays
+
[3] {{reference-paper |author = Melosh, R. J. | year = 1963 | title = Basis of derivation of matricies for the direct stifness method | rest = J.A.I.A.A., '''1''': 1631-1637 }}
-
for k=1:Nq 
+
[4] {{reference-book | author = Zienkiewicz, O. C. | year = 1971 | title = The Finite Element Method in Engineering Science | rest = McGraw-Hill, London}}
-
 
+
-
  Jt=Xe*GBL(nn(:,:),xa(k),ya(k));      % transpose of Jacobian at (xa,ya)
+
-
  Det=Jt(1,1)*Jt(2,2)-Jt(1,2)*Jt(2,1);  % Determinant of Jt & J
+
-
  TL=[Jt(2,2)^2, -2*Jt(2,1)*Jt(2,2), Jt(2,1)^2; ...
+
-
    -Jt(1,2)*Jt(2,2), Jt(1,1)*Jt(2,2)+Jt(2,1)*Jt(1,2), -Jt(1,1)*Jt(2,1); ...
+
-
      Jt(1,2)^2, -2*Jt(1,1)*Jt(1,2),  Jt(1,1)^2]/Det^2;
+
-
 
+
-
% Initialize functions and derivatives at the quadrature point (xa,ya).
+
-
  for m=1:4
+
-
    mm=nd*(m-1);
+
-
    Ds = TL*Zs3412d2{m,k}*Ti{m};
+
-
    Sx(:,mm+ND) = [Ds(2,:); -Ds(1,:)];    % [Pyx, -Pxx]
+
-
    Sy(:,mm+ND) = [Ds(3,:); -Ds(2,:)];    % [Pyy, -Pxy]
+
-
  end  % loop m
+
-
 
+
-
  Dm = Dm+(Sx'*Sx+Sy'*Sy)*(wt(k)*Det);
+
-
 
+
-
end  % end loop k over quadrature points
+
-
 
+
-
gf=zeros(nd4,1);
+
-
m=0;
+
-
for n=1:4                % Loop over element nodes
+
-
  gf(m+ND)=(nn2nft(1,Elcon(n))-1)+ND;  % Get global freedoms
+
-
  m=m+nd;
+
-
end
+
-
 
+
-
RowNdx=repmat(gf,1,nd4);      % Row indices
+
-
ColNdx=RowNdx';              % Col indices
+
-
+
-
Dm = reshape(Dm,nd4*nd4,1);
+
-
RowNdx=reshape(RowNdx,nd4*nd4,1);
+
-
ColNdx=reshape(ColNdx,nd4*nd4,1); 
+
-
 
+
-
return;
+
-
 
+
-
% -------------------------------------------------------------------
+
-
 
+
-
function P2=D3s(ni,q,r)
+
-
% Second derivatives [Pxx; Pxy; Pyy] of simple cubic stream function.
+
-
qi=ni(1); q0=q*ni(1); q1=1+q0;
+
-
ri=ni(2); r0=r*ni(2); r1=1+r0;
+
-
  P2=[-.75*qi^2*(r0+1)*q0, 0, -.25*qi*(r0+1)*(3*q0+1); ...
+
-
      .125*qi*ri*(4-3*(q^2+r^2)), .125*qi*(r0+1)*(3*r0-1), ...
+
-
      -.125*ri*(q0+1)*(3*q0-1); -.75*ri^2*(q0+1)*r0, .25*ri*(q0+1)*(3*r0+1), 0] ; 
+
-
return;
+
-
 
+
-
function G=GBL(ni,q,r)
+
-
% Transposed gradient (derivatives) of scalar bilinear mapping function.
+
-
% The parameter ni can be a vector of coordinate pairs.
+
-
  G=[.25*ni(:,1).*(1+ni(:,2).*r), .25*ni(:,2).*(1+ni(:,1).*q)];
+
-
return;
+
-
</pre>
+
-
<pre>
+
-
function [Cm,RowNdx,ColNdx]=CMatW(Xe,Elcon,nn2nft,Vdof)
+
-
%CMATW - Returns the affine-mapped element convection matrix for the simple cubic Hermite
+
-
%  basis functions on 4-node straight-sided quadrilateral elements with 3 DOF
+
-
%  per node using Gauss quadrature on the reference square and row/col indices.
+
-
% The columns of the array Vdof must contain the 3 nodal degree-of-freedom
+
-
%  vectors in the proper nodal order.
+
-
% The degrees of freedom in Vdof are the stream function and the two components
+
-
%  u and v of the solenoidal velocity vector.
+
-
% The assumed nodal numbering starts with 1 at the lower left corner of the
+
-
%  element and proceeds counter-clockwise around the element.
+
-
%
+
-
% Usage:
+
-
%  [CM,Rndx,Cndx] = CMatW(Xe,Elcon,nn2nft,Vdof)
+
-
%  Xe(1,:) -  x-coordinates of corner nodes of element.
+
-
%  Xe(2,:) -  y-coordinates of corner nodes of element.
+
-
%  Elcon - this element connectivity matrix
+
-
%  nn2nft - global number and type of DOF at each node
+
-
%  Vdof  - (3x4) array of stream function, velocity components, and second
+
-
%    stream function derivatives to specify the velocity over the element.
+
-
%
+
-
% Jonas Holdeman, August 2007, revised  June 2011
+
-
 
+
-
% Constants and fixed data
+
-
nd = 3;  nd4=4*nd;  ND=1:nd;    % nd = number of dofs per node,
+
-
nn=[-1 -1; 1 -1; 1 1; -1 1];    % defines local nodal order
+
-
     
+
-
% Define 5-point quadrature data once, on first call.
+
-
% Gaussian weights and absissas to integrate 9th degree polynomials exactly.
+
-
global GQ5;
+
-
if (isempty(GQ5))  % 5-point quadrature data defined? If not, define arguments & weights.
+
-
  Aq=[-.906179845938664,-.538469310105683, .0,              .538469310105683, .906179845938664];
+
-
  Hq=[ .236926885056189, .478628670499366, .568888888888889, .478628670499366, .236926885056189];
+
-
  GQ5.size=25; GQ5.xa=[Aq;Aq;Aq;Aq;Aq]; GQ5.ya=GQ5.xa';
+
-
  wt=[Hq;Hq;Hq;Hq;Hq]; GQ5.wt=wt.*wt';
+
-
end
+
-
 
+
-
  xa=GQ5.xa; ya=GQ5.ya; wt=GQ5.wt; Nq=GQ5.size;  % Use GQ5 (5x5) for exact integration
+
-
 
+
-
% -----------------------------------------------
+
-
global Zs3412D2c;  global ZS3412c;
+
-
 
+
-
if (isempty(ZS3412c)|isempty(Zs3412D2c)|size(Zs3412D2c,2)~=Nq)
+
-
% Evaluate and save/cache the set of shape functions at quadrature pts.
+
-
  Zs3412D2c=cell(4,Nq);  ZS3412c=cell(4,Nq);
+
-
  for k=1:Nq
+
-
      for m=1:4
+
-
      ZS3412c{m,k}= Sr(nn(m,:),xa(k),ya(k));
+
-
      Zs3412D2c{m,k}=D3s(nn(m,:),xa(k),ya(k));
+
-
      end
+
-
  end
+
-
end  % if(isempty(*))
+
-
 
+
-
% --------------- End fixed data ----------------
+
-
 
+
-
Ti=cell(4);
+
-
%   
+
-
for m=1:4
+
-
  Jt=Xe*GBL(nn(:,:),nn(m,1),nn(m,2));
+
-
  JtiD=[Jt(2,2),-Jt(1,2); -Jt(2,1),Jt(1,1)];  % det(J)*inv(J)
+
-
  Ti{m}=blkdiag(1,JtiD); 
+
-
end
+
-
 
+
-
% Move Jacobian evaluation inside k-loop for general convex quadrilateral.
+
-
% Jt=[x_q, x_r; y_q, y_r];
+
-
 
+
-
Cm=zeros(nd4,nd4); Rcm=zeros(nd4,1); 
+
-
S=zeros(2,nd4); Sx=zeros(2,nd4); Sy=zeros(2,nd4);  % Pre-allocate arrays
+
-
 
+
-
% Begin loop over Gauss-Legendre quadrature points.
+
-
for k=1:Nq 
+
-
 
+
-
  Jt=Xe*GBL(nn(:,:),xa(k),ya(k));        % transpose of Jacobian at (xa,ya)
+
-
  Det=Jt(1,1)*Jt(2,2)-Jt(1,2)*Jt(2,1);    % Determinant of Jt & J
+
-
  Jtd=Jt/Det;
+
-
  TL=[Jt(2,2)^2, -2*Jt(2,1)*Jt(2,2),  Jt(2,1)^2; ...
+
-
    -Jt(1,2)*Jt(2,2), Jt(1,1)*Jt(2,2)+Jt(2,1)*Jt(1,2), -Jt(1,1)*Jt(2,1); ...
+
-
      Jt(1,2)^2, -2*Jt(1,1)*Jt(1,2),  Jt(1,1)^2 ]/Det^2;
+
-
 
+
-
% Initialize functions and derivatives at the quadrature point (xa,ya).
+
-
  for m=1:4
+
-
    mm=nd*(m-1);
+
-
    S(:,mm+ND) = Jtd*ZS3412c{m,k}*Ti{m};
+
-
    Ds = TL*Zs3412D2c{m,k}*Ti{m};
+
-
    Sx(:,mm+ND) = [Ds(2,:); -Ds(1,:)];    % [Pyx, -Pxx]
+
-
    Sy(:,mm+ND) = [Ds(3,:); -Ds(2,:)];    % [Pyy, -Pxy]
+
-
  end  % loop m
+
-
 
+
-
% Compute the fluid velocity at the quadrature point.
+
-
  U = S*Vdof(:);
+
-
% Submatrix ordered by psi,u,v
+
-
  Cm = Cm + S'*(U(1)*Sx+U(2)*Sy)*(wt(k)*Det);
+
-
end    % end loop k over quadrature points
+
-
 
+
-
gf=zeros(nd4,1);
+
-
m=0;
+
-
for n=1:4                % Loop over element nodes
+
-
  gf(m+ND)=(nn2nft(1,Elcon(n))-1)+ND;  % Get global freedoms
+
-
  m=m+nd;
+
-
end
+
-
 
+
-
RowNdx=repmat(gf,1,nd4);      % Row indices
+
-
ColNdx=RowNdx';              % Col indices
+
-
+
-
Cm = reshape(Cm,nd4*nd4,1);
+
-
RowNdx=reshape(RowNdx,nd4*nd4,1);
+
-
ColNdx=reshape(ColNdx,nd4*nd4,1);
+
-
return;
+
-
 
+
-
% ----------------------------------------------------------------------------
+
-
 
+
-
function P2=D3s(ni,q,r)
+
-
% Second derivatives [Pxx; Pxy; Pyy] of simple cubic stream function.
+
-
qi=ni(1); q0=q*ni(1); q1=1+q0;
+
-
ri=ni(2); r0=r*ni(2); r1=1+r0;
+
-
  P2=[-.75*qi^2*(r0+1)*q0, 0, -.25*qi*(r0+1)*(3*q0+1); ...
+
-
      .125*qi*ri*(4-3*(q^2+r^2)), .125*qi*(r0+1)*(3*r0-1), -.125*ri*(q0+1)*(3*q0-1); ...
+
-
      -.75*ri^2*(q0+1)*r0, .25*ri*(q0+1)*(3*r0+1), 0] ; 
+
-
return;
+
-
 
+
-
function S=Sr(ni,q,r)
+
-
%S  Array of solenoidal basis functions on rectangle.
+
-
  qi=ni(1); q0=q*ni(1); q1=1+q0;
+
-
  ri=ni(2); r0=r*ni(2); r1=1+r0;
+
-
  % array of solenoidal vectors
+
-
S=[ .125*ri*q1*(q0*(1-q0)+3*(1-r^2)), .125*q1*r1*(3*r0-1),    .125*ri/qi*q1^2*(1-q0); ...
+
-
      -.125*qi*r1*(r0*(1-r0)+3*(1-q^2)), .125*qi/ri*r1^2*(1-r0), .125*q1*r1*(3*q0-1)];
+
-
return;
+
-
 
+
-
function G=GBL(ni,q,r)
+
-
% Transposed gradient (derivatives) of scalar bilinear mapping function.
+
-
% The parameter ni can be a vector of coordinate pairs.
+
-
  G=[.25*ni(:,1).*(1+ni(:,2).*r), .25*ni(:,2).*(1+ni(:,1).*q)];
+
-
return;
+
-
</pre>
+
-
<pre>
+
-
function [P,Px,Py] = GetPresW(NumNod,NodNdx,Elcon,nn2nft,Xgrid,Ygrid,Q,EBCPr,nu)
+
-
%GETPRESW - Compute continuous simple cubic pressure and derivatives from (simple-cubic)
+
-
%  velocity field on general quadrilateral grid (bilinear geometric mapping).
+
-
%
+
-
% Inputs
+
-
%  NumNod - number of nodes
+
-
%  NodNdx - nodal index into Xgrid and Ygrid 
+
-
%  Elcon  - element connectivity, nodes in element
+
-
%  nn2nft - global number and type of (non-pressure) DOF at each node
+
-
%  Xgrid  - array of nodal x-coordinates
+
-
%  Ygrid  - array of nodal y-coordinates
+
-
%  Q      - array of DOFs for cubic velocity elements
+
-
%  EBCp  - essential pressure boundary condition structure
+
-
%    EBCp.nodn - node number of fixed pressure node
+
-
%    EBCp.val  - value of pressure
+
-
%  nu - diffusion coefficient
+
-
% Outputs
+
-
%  P  - pressure
+
-
%  Px - x-derivative of pressure
+
-
%  Py - y-derivative of pressure
+
-
% Uses
+
-
%  ilu_gmres_with_EBC - to solve the system with essential/Dirichlet BCs
+
-
%  GQ3, GQ4, GQ5  - quadrature rules.
+
-
 
+
-
% Jonas Holdeman,  January 2007, revised June 2011 
+
-
 
+
-
% Constants and fixed data
+
-
nn=[-1 -1; 1 -1; 1 1; -1 1];  % defines local nodal order
+
-
nnd = 4;                      % Number of nodes in elements
+
-
nd = 3;  ND=1:nd;            % Number DOFs in velocity fns (bicubic-derived)
+
-
np = 3;                      % Number DOFs in pressure fns (simple cubic)
+
-
% Parameters for GMRES solver
+
-
GMRES.Tolerance=1.e-9;
+
-
GMRES.MaxIterates=8;
+
-
GMRES.MaxRestarts=6;
+
-
DropTol = 1e-7;                  % Drop tolerence for ilu preconditioner
+
-
 
+
-
% Define 3-point quadrature data once, on first call (if needed).
+
-
% Gaussian weights and absissas to integrate 5th degree polynomials exactly.
+
-
global GQ3;
+
-
if (isempty(GQ3))      % Define 3-point quadrature data once, on first call.
+
-
  Aq=[-.774596669241483, .000000000000000,.774596669241483]; %Abs
+
-
  Hq=[ .555555555555556, .888888888888889,.555555555555556]; %Wts
+
-
  GQ3.size=9; GQ3.xa=[Aq;Aq;Aq]; GQ3.ya=GQ3.xa';
+
-
  wt=[Hq;Hq;Hq]; GQ3.wt=wt.*wt';
+
-
end
+
-
% Define 4-point quadrature data once, on first call (if needed).
+
-
% Gaussian weights and absissas to integrate 7th degree polynomials exactly.
+
-
global GQ4;
+
-
if (isempty(GQ4))      % Define 4-point quadrature data once, on first call.
+
-
  Aq=[-.861136311594053,-.339981043584856,.339981043584856, .861136311594053]; %Abs
+
-
  Hq=[ .347854845137454, .652145154862546,.652145154862546, .347854845137454]; %Wts
+
-
  GQ4.size=16; GQ4.xa=[Aq;Aq;Aq;Aq]; GQ4.ya=GQ4.xa';
+
-
  wt=[Hq;Hq;Hq;Hq]; GQ4.wt=wt.*wt';    % 4x4
+
-
end
+
-
% Define 5-point quadrature data once, on first call (if needed).
+
-
% Gaussian weights and absissas to integrate 9th degree polynomials exactly.
+
-
global GQ5;
+
-
if (isempty(GQ5))  % Has 5-point quadrature data been defined? If not, define arguments & weights.
+
-
  Aq=[-.906179845938664,-.538469310105683, .0,              .538469310105683, .906179845938664];
+
-
  Hq=[ .236926885056189, .478628670499366, .568888888888889, .478628670499366, .236926885056189];
+
-
  GQ5.size=25; GQ5.xa=[Aq;Aq;Aq;Aq;Aq]; GQ5.ya=GQ5.xa';
+
-
  wt=[Hq;Hq;Hq;Hq;Hq]; GQ5.wt=wt.*wt';    % 5x5
+
-
end
+
-
% -------------- end fixed data ------------------------
+
-
 
+
-
NumEl=size(Elcon,2);            % Number of elements
+
-
[NumNy,NumNx]=size(Xgrid);
+
-
NumNod=NumNy*NumNx;            % Number of nodes
+
-
MxVDof=nd*NumNod;              % Max number velocity DOFs
+
-
MxPDof=np*NumNod;              % Max number pressure DOFs
+
-
 
+
-
% We can use the same nodal connectivities (Elcon) for pressure elements,
+
-
%  but need new pointers from nodes to pressure DOFs
+
-
nn2nftp=zeros(2,NumNod); % node number -> pressure nf & nt
+
-
nf=-np+1;  nt=1;
+
-
for n=1:NumNod
+
-
  nf=nf+np;              % all nodes have 3 dofs
+
-
  nn2nftp(:,n)=[nf;nt];  % dof number & type (all nodes type 1)
+
-
end;
+
-
 
+
-
% Allocate space for pressure matrix, velocity data 
+
-
pMat = spalloc(MxPDof,MxPDof,30*MxPDof);  % allocate P mass matrix
+
-
Vdata = zeros(MxPDof,1);      % allocate for velocity data (RHS)
+
-
Qp=zeros(MxPDof,1);      % Nodal pressure DOFs
+
-
 
+
-
% Begin essential boundary conditions, allocate space
+
-
MaxPBC = 1;
+
-
EBCp.Mxdof=MxPDof;
+
-
% Essential boundary condition for pressure
+
-
EBCp.dof = nn2nftp(1,EBCPr.nodn(1));  % Degree-of-freedom index
+
-
EBCp.val = EBCPr.val;                        % Pressure Dof value
+
-
 
+
-
% partion out essential (Dirichlet) dofs
+
-
p_vec = [1:EBCp.Mxdof]';        % List of all dofs
+
-
EBCp.p_vec_undo = zeros(1,EBCp.Mxdof);
+
-
% form a list of non-diri dofs
+
-
EBCp.ndro = p_vec(~ismember(p_vec, EBCp.dof)); % list of non-diri dofs
+
-
% calculate p_vec_undo to restore Q to the original dof ordering
+
-
EBCp.p_vec_undo([EBCp.ndro;EBCp.dof]) = [1:EBCp.Mxdof]; %p_vec';
+
-
 
+
-
  Qp(EBCp.dof(1))=EBCp.val(1);
+
-
 
+
-
Vdof = zeros(nd,nnd);            % Nodal velocity DOFs
+
-
Xe = zeros(2,nnd);
+
-
 
+
-
% BEGIN GLOBAL MATRIX ASSEMBLY
+
-
for ne=1:NumEl 
+
-
  for k=1:4
+
-
    ki=NodNdx(:,Elcon(k,ne));
+
-
    Xe(:,k)=[Xgrid(ki(2),ki(1));Ygrid(ki(2),ki(1))]; 
+
-
  end
+
-
% Get stream function and velocities
+
-
  for n=1:nnd 
+
-
    Vdof(ND,n)=Q((nn2nft(1,Elcon(n,ne))-1)+ND); % Loop over local nodes of element
+
-
  end
+
-
  [pMmat,Rndx,Cndx] = pMassMat(Xe,Elcon(:,ne),nn2nftp);    % Pressure "mass" matrix
+
-
  pMat=pMat+sparse(Rndx,Cndx,pMmat,MxPDof,MxPDof);  % Global mass assembly
+
-
 
+
-
  [CDat,RRndx] = PCDat(Xe,Elcon(:,ne),nn2nftp,Vdof);  % Convective data term
+
-
  Vdata([RRndx]) = Vdata([RRndx])-CDat(:);
+
-
 
+
-
  [DDat,RRndx] = PDDatL(Xe,Elcon(:,ne),nn2nftp,Vdof);  % Diffusive data term
+
-
  Vdata([RRndx]) = Vdata([RRndx]) + nu*DDat(:); % +nu*DDat;
+
-
end;  % Loop ne
+
-
% END GLOBAL MATRIX ASSEMBLY
+
-
 
+
-
Vdatap=Vdata(EBCp.ndro)-pMat(EBCp.ndro,EBCp.dof)*EBCp.val;
+
-
pMatr=pMat(EBCp.ndro,EBCp.ndro);
+
-
Qs=Qp(EBCp.ndro);            % Non-Dirichlet (active) dofs
+
-
 
+
-
Pr=ilu_gmres_with_EBC(pMatr,Vdatap,[],GMRES,Qs,DropTol);
+
-
 
+
-
Qp=[Pr;EBCp.val];        % Augment active dofs with esential (Dirichlet) dofs
+
-
Qp=Qp(EBCp.p_vec_undo);      % Restore natural order
+
-
Qp=reshape(Qp,np,NumNod);
+
-
P= reshape(Qp(1,:),NumNy,NumNx);
+
-
Px=reshape(Qp(2,:),NumNy,NumNx);
+
-
Py=reshape(Qp(3,:),NumNy,NumNx);
+
-
return;
+
-
% >>>>>>>>>>>>> End pressure recovery <<<<<<<<<<<<<
+
-
 
+
-
% -------------------- function pMassMat ----------------------------
+
-
 
+
-
function [MM,Rndx,Cndx]=pMassMat(Xe,Elcon,nn2nftp)
+
-
% Simple cubic gradient element "mass" matrix
+
-
% -------------- Constants and fixed data -----------------
+
-
global GQ4;
+
-
xa=GQ4.xa; ya=GQ4.ya; wt=GQ4.wt; Nq=GQ4.size;
+
-
nn=[-1 -1; 1 -1; 1 1; -1 1]; % defines local nodal order
+
-
nnd=4;
+
-
np=3; np4=nnd*np; NP=1:np;
+
-
%
+
-
global ZG3412pm; 
+
-
if (isempty(ZG3412pm)|size(ZG3412pm,2)~=Nq)
+
-
% Evaluate and save/cache the set of shape functions at quadrature pts.
+
-
  ZG3412pm=cell(nnd,Nq);
+
-
  for k=1:Nq
+
-
    for m=1:nnd
+
-
      ZG3412pm{m,k}=Gr(nn(m,:),xa(k),ya(k));
+
-
    end
+
-
  end
+
-
end  % if(isempty(*))
+
-
% --------------------- end fixed data -----------------
+
-
 
+
-
TGi=cell(nnd);
+
-
  for m=1:nnd  % Loop over corner nodes
+
-
    J=(Xe*GBL(nn(:,:),nn(m,1),nn(m,2)))'; % GBL is gradient of bilinear function
+
-
    TGi{m} = blkdiag(1,J);
+
-
  end  % Loop m
+
-
 
+
-
MM=zeros(np4,np4);  G=zeros(2,np4);  % Preallocate arrays
+
-
for k=1:Nq 
+
-
% Initialize functions and derivatives at the quadrature point (xa,ya).
+
-
  J=(Xe*GBL(nn(:,:),xa(k),ya(k)))';        % transpose of Jacobian J at (xa,ya)
+
-
  Det=J(1,1)*J(2,2)-J(1,2)*J(2,1);          % Determinant of J
+
-
  Ji=[J(2,2),-J(1,2); -J(2,1),J(1,1)]/Det;  % inverse of J
+
-
 
+
-
  mm = 0;
+
-
  for m=1:nnd 
+
-
    G(:,mm+NP) = Ji*ZG3412pm{m,k}*TGi{m};
+
-
    mm = mm+np;
+
-
  end  % loop m
+
-
  MM = MM + G'*G*(wt(k)*Det);
+
-
end        % end loop k (quadrature pts)
+
-
 
+
-
gf=zeros(np4,1);          % array of global freedoms
+
-
m=0;
+
-
for n=1:4                % Loop over element nodes
+
-
  gf(m+NP)=(nn2nftp(1,Elcon(n))-1)+NP; % Get global freedoms
+
-
  m=m+np;
+
-
end
+
-
 
+
-
Rndx=repmat(gf,1,np4);    % Row indices
+
-
Cndx=Rndx';                % Column indices
+
-
+
-
MM = reshape(MM,1,np4*np4);
+
-
Rndx=reshape(Rndx,1,np4*np4);
+
-
Cndx=reshape(Cndx,1,np4*np4); 
+
-
return;
+
-
 
+
-
% --------------------- funnction PCDat -----------------------
+
-
 
+
-
function [PC,Rndx]=PCDat(Xe,Elcon,nn2nftp,Vdof)
+
-
% Evaluate convective force data
+
-
% ----------- Constants and fixed data ---------------
+
-
global GQ5;
+
-
xa=GQ5.xa; ya=GQ5.ya; wt=GQ5.wt; Nq=GQ5.size;
+
-
nn=[-1 -1; 1 -1; 1 1; -1 1]; % defines local nodal order
+
-
nnd=4;    % number of nodes
+
-
np = 3;  np4=4*np;  NP=1:np;
+
-
nd = 3;  nd4=4*nd;  ND=1:nd;
+
-
%
+
-
global ZS3412pc; global ZSX3412pc; global ZSY3412pc; global ZG3412pc; 
+
-
if (isempty(ZS3412pc)|size(ZS3412pc,2)~=Nq)
+
-
% Evaluate and save/cache the set of shape functions at quadrature pts.
+
-
  ZS3412pc=cell(nnd,Nq); ZSX3412pc=cell(nnd,Nq);
+
-
  ZSY3412pc=cell(nnd,Nq); ZG3412pc=cell(nnd,Nq); 
+
-
  for k=1:Nq
+
-
    for m=1:nnd
+
-
      ZS3412pc{m,k} =Sr(nn(m,:),xa(k),ya(k));
+
-
      ZSX3412pc{m,k}=Sxr(nn(m,:),xa(k),ya(k));
+
-
      ZSY3412pc{m,k}=Syr(nn(m,:),xa(k),ya(k));
+
-
      ZG3412pc{m,k}=Gr(nn(m,:),xa(k),ya(k));
+
-
    end  % loop m over nodes 
+
-
  end  % loop k over Nq
+
-
end  % if(isempty(*))
+
-
% ----------------- end fixed data ------------------
+
-
 
+
-
Ti=cell(nnd);  TGi=cell(nnd);
+
-
for m=1:nnd  % Loop over corner nodes
+
-
  J=(Xe*GBL(nn(:,:),nn(m,1),nn(m,2)))';  % Jacobian at (xa,ya)
+
-
  Det=J(1,1)*J(2,2)-J(1,2)*J(2,1);      % Determinant of J & Jt
+
-
  JiD=[J(2,2),-J(1,2); -J(2,1),J(1,1)]; % inv(J)*det(J)
+
-
  Ti{m} = blkdiag(1,JiD');
+
-
  TGi{m} = blkdiag(1,J);
+
-
end  % Loop m over corner nodes
+
-
 
+
-
PC=zeros(np4,1);
+
-
S=zeros(2,nd4);  Sx=zeros(2,nd4);  Sy=zeros(2,nd4);  G=zeros(2,np4);
+
-
 
+
-
for k=1:Nq      % Loop over quadrature points
+
-
  J=(Xe*GBL(nn(:,:),xa(k),ya(k)))';      % Jacobian at (xa,ya)
+
-
  Det=J(1,1)*J(2,2)-J(1,2)*J(2,1);      % Determinant of J & Jt
+
-
  Jtbd=(J/Det)';                        % transpose(J/D)
+
-
  JiD=[J(2,2),-J(1,2); -J(2,1),J(1,1)]; % inv(J)*det(J)
+
-
  Ji=JiD/Det;                          % inverse(J)
+
-
  for m=1:4        % Loop over element nodes
+
-
    mm=nd*(m-1);
+
-
    S(:,mm+ND) =Jtbd*ZS3412pc{m,k}*Ti{m};
+
-
    Sx(:,mm+ND)=Jtbd*(Ji(1,1)*ZSX3412pc{m,k}+Ji(1,2)*ZSY3412pc{m,k})*Ti{m};
+
-
    Sy(:,mm+ND)=Jtbd*(Ji(2,1)*ZSX3412pc{m,k}+Ji(2,2)*ZSY3412pc{m,k})*Ti{m};
+
-
    mm=np*(m-1);
+
-
    G(:,mm+NP)=Ji*ZG3412pc{m,k}*TGi{m};
+
-
  end    % end loop over element nodes
+
-
 
+
-
% Compute the fluid velocities at the quadrature point.
+
-
  U = S*Vdof(:);
+
-
  Ux = Sx*Vdof(:);
+
-
  Uy = Sy*Vdof(:);
+
-
  UgU = U(1)*Ux+U(2)*Uy;  % U dot grad U 
+
-
  PC = PC + G'*UgU*(wt(k)*Det);
+
-
end    % end loop over Nq quadrature points
+
-
 
+
-
gf=zeros(1,np4);          % array of global freedoms
+
-
m=0;
+
-
for n=1:4                % Loop over element nodes
+
-
  gf(m+NP)=(nn2nftp(1,Elcon(n))-1)+NP; % Get global freedoms
+
-
  m=m+np;
+
-
end
+
-
Rndx=gf;
+
-
PC = reshape(PC,1,np4);
+
-
return;
+
-
 
+
-
% ----------------- function PDDatL -------------------------
+
-
 
+
-
function [PD,Rndx]=PDDatL(Xe,Elcon,nn2nftp,Vdof)
+
-
% Evaluate diffusive force data (Laplacian form) 
+
-
% --------------- Constants and fixed data -------------------
+
-
global GQ3;
+
-
xa=GQ3.xa; ya=GQ3.ya; wt=GQ3.wt; Nq=GQ3.size;
+
-
nnd=4;    % number of nodes
+
-
nn=[-1 -1; 1 -1; 1 1; -1 1]; % defines local nodal order
+
-
np = 3;  npdf=nnd*np;  NP=1:np;
+
-
nd = 3;  nd4=nnd*nd;  ND=1:nd;
+
-
global ZSXX3412pd; global ZSXY3412pd; global ZSYY3412pd; global ZG3412pd; 
+
-
if (isempty(ZSXX3412pd)|size(ZSXX3412pd,2)~=Nq)
+
-
% Evaluate and save/cache the set of shape functions at quadrature pts.
+
-
ZSXX3412pd=cell(nnd,Nq); ZSXY3412pd=cell(nnd,Nq);
+
-
ZSYY3412pd=cell(nnd,Nq);  ZG3412pd=cell(nnd,Nq);
+
-
global ZSYY3412pd;
+
-
  for k=1:Nq
+
-
    for m=1:nnd
+
-
      ZSXX3412pd{m,k}=Sxxr(nn(m,:),xa(k),ya(k));
+
-
      ZSXY3412pd{m,k}=Sxyr(nn(m,:),xa(k),ya(k));
+
-
      ZSYY3412pd{m,k}=Syyr(nn(m,:),xa(k),ya(k));
+
-
      ZG3412pd{m,k}=Gr(nn(m,:),xa(k),ya(k));
+
-
    end  % loop m over nodes 
+
-
  end  % loop k over Nq
+
-
end  % if(isempty(*))
+
-
% ------------ end fixed data -------------------
+
-
%
+
-
Ti=cell(nnd);  TGi=cell(nnd);
+
-
  for m=1:nnd  % Loop over corner nodes
+
-
  J=(Xe*GBL(nn(:,:),nn(m,1),nn(m,2)))';  % Jacobian at (xa,ya)
+
-
  Det=J(1,1)*J(2,2)-J(1,2)*J(2,1);      % Determinant of J & Jt
+
-
  JiD=[J(2,2),-J(1,2); -J(2,1),J(1,1)]; % inv(J)*det(J)
+
-
  Ti{m} = blkdiag(1,JiD');
+
-
  TGi{m} = blkdiag(1,J);
+
-
  end  % Loop m over corner nodes
+
-
 
+
-
PD=zeros(npdf,1);
+
-
Sxx=zeros(2,nd4);  Syy=zeros(2,nd4);  G=zeros(2,npdf);
+
-
for k=1:Nq          % Loop over quadrature points
+
-
  Jt=(Xe*GBL(nn(:,:),xa(k),ya(k)));      % transpose of Jacobian at (xa,ya)
+
-
  Det=Jt(1,1)*Jt(2,2)-Jt(1,2)*Jt(2,1);  % Determinant of Jt & J
+
-
  Jtd=Jt/Det;
+
-
  JiD=[Jt(2,2),-Jt(1,2); -Jt(2,1),Jt(1,1)];
+
-
  Ji=JiD/Det;
+
-
  for m=1:nnd        % Loop over element nodes
+
-
    mm=nd*(m-1);    % This transform is approximate !!
+
-
    Sxx(:,mm+ND)=Jtd*(Ji(1,1)^2*ZSXX3412pd{m,k}+2*Ji(1,1)*Ji(1,2)*ZSXY3412pd{m,k}+Ji(1,2)^2*ZSYY3412pd{m,k})*Ti{m};
+
-
    Syy(:,mm+ND)=Jtd*(Ji(2,1)^2*ZSXX3412pd{m,k}+2*Ji(2,1)*Ji(2,2)*ZSXY3412pd{m,k}+Ji(2,2)^2*ZSYY3412pd{m,k})*Ti{m};
+
-
    mm=np*(m-1);
+
-
    G(:,mm+NP) =Ji*ZG3412pd{m,k}*TGi{m};
+
-
  end    % end loop over element nodes
+
-
 
+
-
  LapU = (Sxx+Syy)*Vdof(:);
+
-
  PD = PD+G'*LapU*(wt(k)*Det);
+
-
end    % end loop over quadrature points
+
-
 
+
-
gf=zeros(1,npdf);          % array of global freedoms
+
-
m=0;  K=1:np;
+
-
for n=1:nnd                % Loop over element nodes
+
-
  nfn=nn2nftp(1,Elcon(n))-1;  % Get global freedom
+
-
  gf(m+NP)=(nn2nftp(1,Elcon(n))-1)+NP;
+
-
  m=m+np;
+
-
end
+
-
Rndx=gf;
+
-
PD = reshape(PD,1,npdf);
+
-
return;
+
-
 
+
-
% ------------------------------------------------------------------------------
+
-
function gv=Gr(ni,q,r)
+
-
%GR  Cubic Hermite gradient basis functions for pressure gradient.
+
-
  qi=ni(1); q0=q*ni(1); 
+
-
  ri=ni(2); r0=r*ni(2);
+
-
% Cubic Hermite gradient 
+
-
gv=[1/8*qi*(1+r0)*(r0*(1-r0)+3*(1-q^2)), -1/8*(1+r0)*(1+q0)*(1-3*q0), ...
+
-
      -1/8*qi/ri*(1-r^2)*(1+r0); ...
+
-
    1/8*ri*(1+q0)*(q0*(1-q0)+3*(1-r^2)),  -1/8/qi*ri*(1-q^2)*(1+q0), ...
+
-
      -1/8*(1+q0)*(1+r0)*(1-3*r0)];
+
-
return;
+
-
 
+
-
function gx=Gxr(ni,q,r)
+
-
%GRX - Cubic Hermite gradient basis functions for pressure gradient.
+
-
  qi=ni(1); q0=q*ni(1); 
+
-
  ri=ni(2); r0=r*ni(2);
+
-
% x-derivative of irrotational vector
+
-
  gx=[-3/4*qi^2*q0*(1+r0), 1/4*qi*(1+r0)*(1+3*q0), 0; ...
+
-
      1/8*qi*ri*(4-3*q0^2-3*r0^2), -1/8*ri*(1+q0)*(1-3*q0), -1/8*qi*(1+r0)*(1-3*r0)];
+
-
return;
+
-
 
+
-
function gy=Gyr(ni,q,r)
+
-
%GRY - Cubic Hermite gradient basis functions for pressure gradient.
+
-
  qi=ni(1); q0=q*ni(1); 
+
-
  ri=ni(2); r0=r*ni(2);
+
-
% y-derivative of irrotational vector
+
-
  gy=[1/8*qi*ri*(4-3*q0^2-3*r0^2), -1/8*ri*(1+q0)*(1-3*q0), -1/8*qi*(1+r0)*(1-3*r0); ...
+
-
    -3/4*ri^2*r0*(1+q0), 0, 1/4*ri*(1+q0)*(1+3*r0)];
+
-
return;
+
-
 
+
-
% ------------------------------------------------------------------------------
+
-
function S=Sr(ni,q,r)
+
-
%SR  Array of solenoidal basis functions.
+
-
  qi=ni(1); q0=q*ni(1); q1=1+q0;
+
-
  ri=ni(2); r0=r*ni(2); r1=1+r0;
+
-
% array of solenoidal vectors
+
-
  S=[ .125*ri*q1*(q0*(1-q0)+3*(1-r^2)), .125*q1*r1*(3*r0-1),    .125*ri/qi*q1^2*(1-q0); ...
+
-
    -.125*qi*r1*(r0*(1-r0)+3*(1-q^2)), .125*qi/ri*r1^2*(1-r0), .125*q1*r1*(3*q0-1)];
+
-
return;
+
-
 
+
-
function S=Sxr(ni,q,r)
+
-
%SXR  Array of x-derivatives of solenoidal basis functions.
+
-
  qi=ni(1); q0=q*ni(1); q1=1+q0;
+
-
  ri=ni(2); r0=r*ni(2); r1=1+r0;
+
-
% array of solenoidal vectors
+
-
  S=[.125*qi*ri*(4-3*q^2-3*r^2), .125*qi*r1*(3*r0-1), -.125*ri*q1*(3*q0-1); ...
+
-
      .75*qi^2*r1*q0,              0,                  .25*qi*r1*(3*q0+1)];
+
-
return;
+
-
 
+
-
function s=Syr(ni,q,r)
+
-
%SYR  Array of y-derivatives of solenoidal basis functions.
+
-
  qi=ni(1); q0=q*ni(1); q1=1+q0;
+
-
  ri=ni(2); r0=r*ni(2); r1=1+r0;
+
-
% array of solenoidal vectors
+
-
  s=[-.75*ri^2*q1*r0,            .25*ri*q1*(3*r0+1),  0 ; ...
+
-
      -.125*qi*ri*(4-3*q^2-3*r^2), .125*qi*r1*(1-3*r0), .125*ri*q1*(3*q0-1)];
+
-
return;
+
-
 
+
-
function s=Sxxr(ni,q,r)
+
-
%SXXR  Array of second x-derivatives of solenoidal basis functions.
+
-
  qi=ni(1); q0=q*ni(1); q1=1+q0;
+
-
  ri=ni(2); r0=r*ni(2); r1=1+r0;
+
-
  % array of solenoidal vectors
+
-
  s=[-3/4*qi^2*ri*q0, 0, -1/4*ri*qi*(1+3*q0); 3/4*qi^3*r1, 0, 3/4*qi^2*r1 ];
+
-
return;
+
-
 
+
-
function s=Syyr(ni,q,r)
+
-
%SYYR  Array of second y-derivatives of solenoidal basis functions.
+
-
  qi=ni(1); q0=q*ni(1); q1=1+q0;
+
-
  ri=ni(2); r0=r*ni(2); r1=1+r0;
+
-
% array of solenoidal vectors
+
-
s=[-3/4*ri^3*q1, 3/4*ri^2*q1, 0; 3/4*qi*ri^2*r0, -1/4*qi*ri*(1+3*r0), 0 ];
+
-
return;
+
-
 
+
-
function s=Sxyr(ni,q,r)
+
-
%SXYR  Array of second (cross) xy-derivatives of solenoidal basis functions.
+
-
  qi=ni(1); q0=q*ni(1); q1=1+q0;
+
-
  ri=ni(2); r0=r*ni(2); r1=1+r0;
+
-
% array of solenoidal vectors
+
-
s=[-3/4*qi*ri^2*r0, 1/4*qi*ri*(1+3*r0), 0; 3/4*qi^2*ri*q0, 0, 1/4*qi*ri*(1+3*q0)];
+
-
return;
+
-
 
+
-
function G=GBL(ni,q,r)
+
-
% Transposed gradient (derivatives) of scalar bilinear mapping function.
+
-
% The parameter ni can be a vector of coordinate pairs.
+
-
  G=[.25*ni(:,1).*(1+ni(:,2).*r), .25*ni(:,2).*(1+ni(:,1).*q)];
+
-
return;
+
-
</pre>
+
-
<pre>
+
-
function Q = ilu_gmres_with_EBC(mat,rhs,EBC,GMRES,Q0,DropTol)
+
-
% ILU_GMRES_WITH_EBCx  Solves matrix equation mat*Q = rhs.
+
-
%
+
-
% Solves the matrix equation mat*Q = rhs, optionally constrained
+
-
% by Dirichlet boundary conditions described in diri_list, using
+
-
% Matlab's preconditioned gmres sparse solver.  When Dirichlet
+
-
% boundary conditions are provided, the routine enforces them by
+
-
% reordering to partition out Dirichlet degrees of freedom.
+
-
% usage:  Q = ilu_gmres_with_EBC(mat,rhs,EBC,GMRES,Q0,DropTol)
+
-
%    or:  Q = ilu_gmres_with_EBC(mat,rhs,EBC,GMRES,Q0)
+
-
%    or:  Q = ilu_gmres_with_EBC(mat,rhs,EBC,GMRES)
+
-
%    or:  Q = ilu_gmres_with_EBC(mat,rhs,EBC)
+
-
%    or:  Q = ilu_gmres_with_EBC(mat,rhs)
+
-
%
+
-
%  mat  - matrix of linear system to be solved.
+
-
%  rhs  - right hand side of linear system.
+
-
%  EBC.dof, EBC.val - (optional) list of Dirichlet boundary
+
-
%          conditions (constraints). May be empty ([]).
+
-
%  GMRES - Structure specifying tolerance, max iterations and
+
-
%          restarts. Use [] for default values.
+
-
%  Q0  - (optional) initial approximation to solution for restart,
+
-
%          may be empty ([]).
+
-
%  DropTol - drop tolerance for luinc preconditioner (default=1e-6).
+
-
%
+
-
% The solution Q is reported with the original ordering restored.
+
-
%
+
-
% If specified and not empty, diri_list should have two columns
+
-
%  total and one row for each diri degree of freedom.  The first
+
-
%  column of each row must contain global index of the degree of
+
-
%  freedom.  The second column contains the actual Dirichlet value.
+
-
%  If there are no Dirichlet nodes, omit this parameter if not using
+
-
%  the restart capabilities, or supply empty matrix ([]) as diri_list.
+
-
%
+
-
% Nominal values for GMRES for a large difficult problem might be:
+
-
%  GMRES.Tolerance  = 1.e-12,
+
-
%  GMRES.MaxIterates = 75,
+
-
%  GMRES.MaxRestarts = 14.
+
-
%
+
-
% Jonas Holdeman,  revised February, 2009.
+
-
 
+
-
% Drop tolerance for luinc preconditioner, nominal value - 1.e-6
+
-
if (nargin<6 | isempty(DropTol) | DropTol<=0)
+
-
  droptol = 1.e-6;        % default
+
-
else droptol = DropTol;  % assigned
+
-
end
+
-
 
+
-
if nargin<=3 | isempty(GMRES)
+
-
  Tol = 1.e-12;  MaxIter = 75;  MaxRstrt = 14;
+
-
else
+
-
% Tol=tolerance for residual, increase it if solution takes too long.
+
-
  Tol=GMRES.Tolerance;
+
-
% MaxIter = maximum number of iterations before restart (MT used 5)
+
-
  MaxIter=GMRES.MaxIterates;
+
-
% MaxRstrt = maximum number of restarts before giving up (MT used 10)
+
-
  MaxRstrt=GMRES.MaxRestarts;
+
-
end
+
-
 
+
-
% check arguments for reasonableness
+
-
tdof = size(mat,1); % total number of degrees of freedom
+
-
 
+
-
% good mat is a square tdof by tdof matrix
+
-
if (size(mat,2)~=size(mat,1) | size(size(mat),2)~=2)
+
-
  error('mat must be a square matrix')
+
-
end
+
-
 
+
-
% valid rhs has the dimensions [tdof, 1]
+
-
if (size(rhs,1)~=tdof | size(rhs,2)~=1)
+
-
  error('rhs must be a column matrix with the same number of rows as mat')
+
-
end
+
-
 
+
-
% valid dimensions for optional diri_list
+
-
if nargin<=2
+
-
  EBC=[];
+
-
elseif ~isempty(EBC) & (size(EBC.val,1)>=tdof ...
+
-
      | size(EBC.dof,1)>=tdof)
+
-
  error('check dimensions of EBC')
+
-
end
+
-
% (optional) valid Q0 is empty or has the dimensions [tdof, 1]
+
-
if nargin<=4
+
-
  Q0=[];
+
-
elseif ~isempty(Q0) & (size(Q0,1)~=tdof | size(rhs,2)~=1)
+
-
  error('Q0 must be a column matrix with the same number of rows as mat')
+
-
end
+
-
 
+
-
% handle the case of no Dirichlet dofs separately
+
-
if isempty(EBC)
+
-
% skip diri partitioning, solve the system
+
-
  [L,U] = luinc(mat,droptol);      % incomplete LU
+
-
  Q = gmres(mat,rhs,MaxIter,Tol,MaxRstrt,L,U,Q0); % GMRES
+
-
 
+
-
else
+
-
% Form list of all DOFs 
+
-
  p_vec = [1:tdof]';
+
-
% partion out diri dofs
+
-
  EBCdofs = EBC.dof(:,1); % list of dofs which are Dirichlet
+
-
  EBCvals = EBC.val(:,1);  % Dirichlet dof values
+
-
 
+
-
% form a list of non-diri dofs
+
-
  ndro = p_vec(~ismember(p_vec, EBCdofs)); % list of non-diri dofs
+
-
 
+
-
% Move Dirichlet DOFs to right side
+
-
  rhs_reduced = rhs(ndro) - mat(ndro, EBCdofs) * EBCvals;
+
-
 
+
-
% solve the reduced system (preconditioned gmres)
+
-
  A = mat(ndro,ndro);
+
-
 
+
-
% Compute incomplete LU preconditioner
+
-
  [L,U] = luinc(A,droptol);      % incomplete LU
+
-
 
+
-
% Remove Dirichlet DOFs from initial estimate
+
-
  if ~isempty(Q0)  Q0=Q0(ndro);  end
+
-
+
-
% solve the reduced system (preconditioned gmres)
+
-
  Q_reduced = gmres(A,rhs_reduced,MaxIter,Tol,MaxRstrt,L,U,Q0);
+
-
 
+
-
% insert the Dirichlet values into the solution
+
-
  Q = [Q_reduced; EBCvals];
+
-
 
+
-
% calculate p_vec_undo to restore Q to the original dof ordering
+
-
  p_vec_undo = zeros(1,tdof);
+
-
  p_vec_undo([ndro;EBCdofs]) = [1:tdof];
+
-
 
+
-
% restore the original ordering
+
-
  Q = Q(p_vec_undo);
+
-
end
+
-
</pre>
+
-
 
+
-
File '''regrade.m''' for generating non-uniform mesh spacing.
+
-
 
+
-
<pre>
+
-
function y=regrade(x,a,e)
+
-
%REGRADE  grade nodal points in array towards edge or center
+
-
%
+
-
% Regrades array of points
+
-
%
+
-
% Usage: regrade(x,a,e)
+
-
% x is array of nodal point coordinates in increasing order.
+
-
% a is parameter which controls grading.
+
-
% e selects side or sides for refinement.
+
-
%
+
-
% if e=0: refine both sides, 1: refine upper, 2: refine lower.
+
-
%
+
-
% if a=1 then return xarray unaltered.
+
-
% if a<1 then grade towards the edge(s)
+
-
% if a>1 then grade away from edge.
+
-
 
+
-
ae=abs(a);
+
-
n=length(x);
+
-
y=x;
+
-
if ae==1 | n<3 | (e~=0 & e~=1 & e~=2) return;
+
-
end;
+
-
if e==0
+
-
  Xmx=max(x);
+
-
  Xmn=min(x);
+
-
  Xc=(Xmx+Xmn)/2;
+
-
  Xl=(Xmx-Xmn)/2;
+
-
  for k=2:(n-1)
+
-
    xk=x(k)-Xc;
+
-
    y(k)=Xc+Xl*sign(xk)*(abs(xk/Xl))^ae;
+
-
end
+
-
elseif (e==1 & x(1)<x(n)) | (e==2 & x(1)>x(n))
+
-
  for k=2:n-1
+
-
      xk=x(k)-x(1);
+
-
      y(k)=x(1)+(x(n)-x(1))*(abs(xk/(x(n)-x(1))))^ae;
+
-
  end
+
-
else  % (e==2 & x(1)<x(n)) | (e==1 & x(1)>x(n))
+
-
  for k=2:n-1
+
-
      xk=x(k)-x(n);
+
-
      y(k)=x(n)+(x(1)-x(n))*(abs(xk/(x(1)-x(n))))^ae;
+
-
  end
+
-
end
+
-
return;
+
-
</pre>
+

Revision as of 22:44, 9 July 2011

Contents

Lid-driven cavity using pressure-free velocity formulation

This sample code uses four-node simple-cubic finite elements and simple iteration.

Theory

The incompressible Navier-Stokes equation is a differential algebraic equation, having the inconvenient feature that there is no explicit mechanism for advancing the pressure in time. Consequently, much effort has been expended to eliminate the pressure from all or part of the computational process. We show a simple, natural way of doing this.

The incompressible Navier-Stokes equation is composite, the sum of two orthogonal equations,

\frac{\partial\mathbf{v}}{\partial t}=\Pi^S(-\mathbf{v}\cdot\nabla\mathbf{v}+\nu\nabla^2\mathbf{v})+\mathbf{f}^S ,
\rho^{-1}\nabla p=\Pi^I(-\mathbf{v}\cdot\nabla\mathbf{v}+\nu\nabla^2\mathbf{v})+\mathbf{f}^I ,

where \Pi^S and \Pi^I are solenoidal and irrotational projection operators satisfying \Pi^S+\Pi^I=1 and \mathbf{f}^S and \mathbf{f}^I are the nonconservative and conservative parts of the body force. This result follows from the Helmholtz Theorem . The first equation is a pressureless governing equation for the velocity, while the second equation for the pressure is a functional of the velocity and is related to the pressure Poisson equation. The explicit functional forms of the projection operator in 2D and 3D are found from the Helmholtz Theorem, showing that these are integro-differential equations, and not particularly convenient for numerical computation.

Equivalent weak or variational forms of the equations, proved to produce the same velocity solution as the Navier-Stokes equation are

(\mathbf{w},\frac{\partial\mathbf{v}}{\partial t})=-(\mathbf{w},\mathbf{v}\cdot\nabla\mathbf{v})-\nu(\nabla\mathbf{w}: \nabla\mathbf{v})+(\mathbf{w},\mathbf{f}^S),
(\mathbf{g}_i,\nabla p)=-(\mathbf{g}_i,\mathbf{v}\cdot\nabla\mathbf{v}_j)-\nu(\nabla\mathbf{g}_i: \nabla\mathbf{v}_j)+(\mathbf{g}_i,\mathbf{f}^I)\,,

for divergence-free test functions \mathbf{w} and irrotational test functions \mathbf{g} satisfying appropriate boundary conditions. Here, the projections are accomplished by the orthogonality of the solenoidal and irrotational function spaces. The discrete form of this is emminently suited to finite element computation of divergence-free flow.

In the discrete case, it is desirable to choose basis functions for the velocity which reflect the essential feature of incompressible flow — the velocity elements must be divergence-free. While the velocity is the variable of interest, the existence of the stream function or vector potential is necessary by the Helmholtz Theorem. Further, to determine fluid flow in the absence of a pressure gradient, one can specify the difference of stream function values across a 2D channel, or the line integral of the tangential component of the vector potential around the channel in 3D, the flow being given by Stokes' Theorem. This leads naturally to the use of Hermite stream function (in 2D) or velocity potential elements (in 3D).

Involving, as it does, both stream function and velocity degrees-of-freedom, the method might be called a velocity-stream function or stream function-velocity method.

We now restrict discussion to 2D continuous Hermite finite elements which have at least first-derivative degrees-of-freedom. With this, one can draw a large number of candidate triangular and rectangular elements from the plate-bending literature. These elements have derivatives as components of the gradient. In 2D, the gradient and curl of a scalar are clearly orthogonal, given by the expressions,

\nabla\phi = \left[\frac{\partial \phi}{\partial x},\,\frac{\partial \phi}{\partial y}\right]^T, \quad
\nabla\times\phi = \left[\frac{\partial \phi}{\partial y},\,-\frac{\partial \phi}{\partial x}\right]^T.

Adopting continuous plate-bending elements, interchanging the derivative degrees-of-freedom and changing the sign of the appropriate one gives many families of stream function elements.

Taking the curl of the scalar stream function elements gives divergence-free velocity elements [1][2]. The requirement that the stream function elements be continuous assures that the normal component of the velocity is continuous across element interfaces, all that is necessary for vanishing divergence on these interfaces.

Boundary conditions are simple to apply. The stream function is constant on no-flow surfaces, with no-slip velocity conditions on surfaces. Stream function differences across open channels determine the flow. No boundary conditions are necessary on open boundaries [1], though consistent values may be used with some problems. These are all Dirichlet conditions.

The algebraic equations to be solved are simple to set up, but of course are non-linear, requiring iteration of the linearized equations.

The finite elements we will use here are apparently due to Melosh [3], but can also be found in Zienkiewitz [4]. These simple cubic-complete elements have three degrees-of-freedom at each of the four nodes. In the sample code we use this Hermite element for the pressure, and the modified form obtained by interchanging derivatives and the sign of one of them (though a simple bilinear element could be used for the pressure as well). The degrees-of-freedom are the pressure and pressure gardient, and the stream function and components of the solenoidal velocity for the modified element. The normal component of the velocity is continuous at element interfaces as is required, but the tangential velocity component may not be continuous.

The code implementing the lid-driven cavity problem is written for Matlab. The script below is problem-specific, and calls problem-independent functions to evaluate the element diffusion and convection matricies and evaluate the pressure from the resulting velocity field. These three functions accept general quadrilateral elements with straight sides as well as the rectangular elements used here. Other functions are a GMRES iterative solver using ILU preconditioning and incorporating the essential boundary conditions, and a function to produce non-uniform nodal spacing for the problem mesh.

This "educational code" is a simplified version of the code used in [1]. The user interface is the code itself. The user can experiment with changing the mesh, the Reynolds number, and the number of nonlinear iterations performed, as well as the relaxation factor. There are suggestions in the code regarding near-optimum choices for this factor as a function of Reynolds number. These values are given in the paper as well. For larger Reynolds numbers, a smaller relaxation factor speeds up convergence by smoothing the velocity factor (\mathbf{v}\cdot\nabla) in the convection term, but will impede convergence if made too small.

The output consists of graphic plots of contour levels of the stream function and the pressure levels.

This simplified version for this Wiki resulted from removal of computation of the vorticity, a restart capability, area weighting for the error, and production of publication-quality plots from one of the research codes used with the paper.

Lid-driven cavity Matlab script

%LDCW            LID-DRIVEN CAVITY 
% Finite element solution of the 2D Navier-Stokes equation using 4-node, 12 DOF,
%  (3-DOF/node), simple-cubic-derived rectangular Hermite basis for 
%   the Lid-Driven Cavity problem.
%
% This could also be characterized as a VELOCITY-STREAM FUNCTION or 
%   STREAM FUNCTION-VELOCITY method.
%
% Reference:  "A Hermite finite element method for incompressible fluid flow", 
%    Int. J. Numer. Meth. Fluids, 64, P376-408 (2010). 
%
% Simplified Wiki version 
% The rectangular problem domain is defined between Cartesian 
%   coordinates Xmin & Xmax and Ymin & Ymax.
% The computational grid has NumEx elements in the x-direction 
%   and NumEy elements in the y-direction. 
% The nodes and elements are numbered column-wise from the  
%   upper left corner to the lower right corner. 
%
%This script calls the user-defined functions:
% regrade      - to regrade the mesh 
% DMatW        - to evaluate element diffusion matrix 
% CMatW        - to evaluate element convection matrix
% GetPresW     - to evaluate the pressure 
% ilu_gmres_with_EBC - to solve the system with essential/Dirichlet BCs 
%
% Jonas Holdeman   August 2007, revised June 2011

clear all;
disp('Lid-driven cavity');
disp(' Four-node, 12 DOF, simple-cubic stream function basis.');

% -------------------------------------------------------------
  nd = 3; nd2=nd*nd;  % Number of DOF per node - do not change!!
% -------------------------------------------------------------
ETstart=clock;

% Parameters for GMRES solver 
GMRES.Tolerance=1.e-14;
GMRES.MaxIterates=15; 
GMRES.MaxRestarts=6;

% Optimal relaxation parameters for given Reynolds number
% (see IJNMF reference)
% Re          100   1000   3200   5000   7500  10000  12500 
% RelxFac:  1.04    1.11   .860   .830   .780   .778   .730 
% ExpCR1    1.488   .524   .192   .0378   --     --     -- 
% ExpCRO    1.624   .596   .390   .331   .243   .163   .133
% CritFac:  1.82    1.49   1.14  1.027   .942   .877   .804 

% Define the problem geometry, set mesh bounds:
Xmin = 0.0; Xmax = 1.0; Ymin = 0.0; Ymax = 1.0; 

% Set mesh grading parameters (set to 1 if no grading).
% See below for explanation of use of parameters. 
xgrd = .75; ygrd=.75;   % (xgrd = 1, ygrd=1 for uniform mesh) 

% Set " RefineBoundary=1 " for additional refinement at boundary, 
%  i.e., split first element along boundary into two. 
RefineBoundary=1; 

%     DEFINE THE MESH  
% Set number of elements in each direction
NumEx = 18;   NumEy = NumEx;

% PLEASE CHANGE OR SET NUMBER OF ELEMENTS TO CHANGE/SET NUMBER OF NODES!
NumNx=NumEx+1;  NumNy=NumEy+1;

%   Define problem parameters: 
 % Lid velocity
Vlid=1.;

 % Reynolds number
Re=1000.; 

% factor for under/over-relaxation starting at iteration RelxStrt 
RelxFac = 1.;  % 

% Number of nonlinear iterations
MaxNLit=20; %

%--------------------------------------------------------

 % Viscosity for specified Reynolds number
 nu=Vlid*(Xmax-Xmin)/Re; 
 
% Grade the mesh spacing if desired, call regrade(x,agrd,e). 
% if e=0: refine both sides, 1: refine upper, 2: refine lower
% if agrd=xgrd|ygrd is the parameter which controls grading, then
%   if agrd=1 then leave array unaltered.
%   if agrd<1 then refine (make finer) towards the ends
%   if agrd>1 then refine (make finer) towards the center.
% 
%  Generate equally-spaced nodal coordinates and refine if desired.
if (RefineBoundary==1)
  XNc=linspace(Xmin,Xmax,NumNx-2); 
  XNc=[XNc(1),(.62*XNc(1)+.38*XNc(2)),XNc(2:end-1),(.38*XNc(end-1)+.62*XNc(end)),XNc(end)];
  YNc=linspace(Ymax,Ymin,NumNy-2); 
  YNc=[YNc(1),(.62*YNc(1)+.38*YNc(2)),YNc(2:end-1),(.38*YNc(end-1)+.62*YNc(end)),YNc(end)];
else
  XNc=linspace(Xmin,Xmax,NumNx); 
  YNc=linspace(Ymax,Ymin,NumNy); 
end
if xgrd ~= 1 XNc=regrade(XNc,xgrd,0); end;  % Refine mesh if desired
if ygrd ~= 1 YNc=regrade(YNc,ygrd,0); end;
[Xgrid,Ygrid]=meshgrid(XNc,YNc);% Generate the x- and y-coordinate meshes.

% Allocate storage for fields 
psi0=zeros(NumNy,NumNx);
u0=zeros(NumNy,NumNx);
v0=zeros(NumNy,NumNx);

%--------------------Begin grid plot-----------------------
% ********************** FIGURE 1 *************************
% Plot the grid 
figure(1);
clf;
orient portrait;  orient tall; 
subplot(2,2,1);
hold on;
plot([Xmax;Xmin],[YNc;YNc],'k');
plot([XNc;XNc],[Ymax;Ymin],'k');
hold off;
axis([Xmin,Xmax,Ymin,Ymax]);
axis equal;
axis image;
title([num2str(NumNx) 'x' num2str(NumNy) ...
      ' node mesh for Lid-driven cavity']);
pause(.1);
%-------------- End plotting Figure 1 ----------------------


%Contour levels, Ghia, Ghia & Shin, Re=100, 400, 1000, 3200, ...
clGGS=[-.1175,-.1150,-.11,-.1,-.09,-.07,-.05,-.03,-.01,-1.e-4,-1.e-5,-1.e-7,-1.e-10,...
      1.e-8,1.e-7,1.e-6,1.e-5,5.e-5,1.e-4,2.5e-4,5.e-4,1.e-3,1.5e-3,3.e-3];
CL=clGGS;   % Select contour level option
if (Vlid<0) CL=-CL; end

NumNod=NumNx*NumNy;     % total number of nodes
MaxDof=nd*NumNod;        % maximum number of degrees of freedom
EBC.Mxdof=nd*NumNod;        % maximum number of degrees of freedom

nn2nft=zeros(2,NumNod); % node number -> nf & nt
NodNdx=zeros(2,NumNod);
% Generate lists of active nodal indices, freedom number & type 
ni=0;  nf=-nd+1;  nt=1;          %   ________
for nx=1:NumNx                   %  |        |
   for ny=1:NumNy                %  |        |
      ni=ni+1;                   %  |________|
      NodNdx(:,ni)=[nx;ny];
      nf=nf+nd;               % all nodes have 3 dofs 
      nn2nft(:,ni)=[nf;nt];   % dof number & type (all nodes type 1)
   end;
end;
%NumNod=ni;     % total number of nodes
nf2nnt=zeros(2,MaxDof);  % (node, type) associated with dof
ndof=0; dd=[1:nd];
for n=1:NumNod
  for k=1:nd
    nf2nnt(:,ndof+k)=[n;k];
  end
  ndof=ndof+nd;
end

NumEl=NumEx*NumEy;

% Generate element connectivity, from upper left to lower right. 
Elcon=zeros(4,NumEl);
ne=0;  LY=NumNy;
for nx=1:NumEx
  for ny=1:NumEy
    ne=ne+1;
    Elcon(1,ne)=1+ny+(nx-1)*LY; 
    Elcon(2,ne)=1+ny+nx*LY;
    Elcon(3,ne)=1+(ny-1)+nx*LY;
    Elcon(4,ne)=1+(ny-1)+(nx-1)*LY;
  end  % loop on ny
end  % loop on nx

% Begin essential boundary conditions, allocate space 
MaxEBC = nd*2*(NumNx+NumNy-2);
EBC.dof=zeros(MaxEBC,1);  % Degree-of-freedom index  
EBC.typ=zeros(MaxEBC,1);  % Dof type (1,2,3)
EBC.val=zeros(MaxEBC,1);  % Dof value 

 X1=XNc(2);  X2=XNc(NumNx-1);
nc=0;
for nf=1:MaxDof
  ni=nf2nnt(1,nf);
  nx=NodNdx(1,ni);
  ny=NodNdx(2,ni);
  x=XNc(nx);
  y=YNc(ny); 
  if(x==Xmin | x==Xmax | y==Ymin)
    nt=nf2nnt(2,nf);
    switch nt;
    case {1, 2, 3}
      nc=nc+1; EBC.typ(nc)=nt; EBC.dof(nc)=nf; EBC.val(nc)=0;  % psi, u, v 
    end  % switch (type)
  elseif (y==Ymax)
    nt=nf2nnt(2,nf);
    switch nt;
    case {1, 3}
      nc=nc+1; EBC.typ(nc)=nt; EBC.dof(nc)=nf; EBC.val(nc)=0;   % psi, v 
    case 2
      nc=nc+1; EBC.typ(nc)=nt; EBC.dof(nc)=nf; EBC.val(nc)=Vlid;   % u
    end  % switch (type) 
  end  % if (boundary)
end  % for nf 
EBC.num=nc; 
  
if (size(EBC.typ,1)>nc)   % Truncate arrays if necessary 
   EBC.typ=EBC.typ(1:nc);
   EBC.dof=EBC.dof(1:nc);
   EBC.val=EBC.val(1:nc);
end     % End ESSENTIAL (Dirichlet) boundary conditions

% partion out essential (Dirichlet) dofs
p_vec = [1:EBC.Mxdof]';         % List of all dofs
EBC.p_vec_undo = zeros(1,EBC.Mxdof);
% form a list of non-diri dofs
EBC.ndro = p_vec(~ismember(p_vec, EBC.dof));	% list of non-diri dofs
% calculate p_vec_undo to restore Q to the original dof ordering
EBC.p_vec_undo([EBC.ndro;EBC.dof]) = [1:EBC.Mxdof]; %p_vec';

Q=zeros(MaxDof,1); % Allocate space for solution (dof) vector

% Initialize fields to boundary conditions
for k=1:EBC.num
   Q(EBC.dof(k))=EBC.val(k); 
end;

errpsi=zeros(NumNy,NumNx);  % error correct for iteration

MxNL=max(1,MaxNLit);
np0=zeros(1,MxNL);     % Arrays for convergence info
nv0=zeros(1,MxNL);

Qs=[];
   
Dmat = spalloc(MaxDof,MaxDof,36*MaxDof);   % to save the diffusion matrix
Vdof=zeros(nd,4);
Xe=zeros(2,4);      % coordinates of element corners 

NLitr=0; ND=1:nd;
while (NLitr<MaxNLit), NLitr=NLitr+1;   % <<< BEGIN NONLINEAR ITERATION 
      
tclock=clock;   % Start assembly time <<<<<<<<<
% Generate and assemble element matrices
Mat=spalloc(MaxDof,MaxDof,36*MaxDof);
RHS=spalloc(MaxDof,1,MaxDof);
%RHS = zeros(MaxDof,1);
Emat=zeros(1,16*nd2);         % Values 144=4*4*(nd*nd) 

% BEGIN GLOBAL MATRIX ASSEMBLY
for ne=1:NumEl   
  
  for k=1:4
     ki=NodNdx(:,Elcon(k,ne));
     Xe(:,k)=[XNc(ki(1));YNc(ki(2))];   
  end
   
  if NLitr == 1    
%     Fluid element diffusion matrix, save on first iteration    
     [DEmat,Rndx,Cndx] = DMatW(Xe,Elcon(:,ne),nn2nft);
     Dmat=Dmat+sparse(Rndx,Cndx,DEmat,MaxDof,MaxDof);  % Global diffusion mat 
   end 
   
   if (NLitr>1) 
%    Get stream function and velocities
     for n=1:4  
       Vdof(ND,n)=Q((nn2nft(1,Elcon(n,ne))-1)+ND); % Loop over local element nodes
     end
%     Fluid element convection matrix, first iteration uses Stokes equation. 
       [Emat,Rndx,Cndx] = CMatW(Xe,Elcon(:,ne),nn2nft,Vdof);  
      Mat=Mat+sparse(Rndx,Cndx,-Emat,MaxDof,MaxDof);  % Global convection assembly 
   end

end;  % loop ne over elements 
% END GLOBAL MATRIX ASSEMBLY

Mat = Mat -nu*Dmat;    % Add in cached/saved global diffusion matrix 

disp(['(' num2str(NLitr) ') Matrix assembly complete, elapsed time = '...
      num2str(etime(clock,tclock)) ' sec']);  % Assembly time <<<<<<<<<<<
pause(1);

Q0 = Q;  % Save dof values 

% Solve system
tclock=clock; %disp('start solution'); % Start solution time  <<<<<<<<<<<<<<

RHSr=RHS(EBC.ndro)-Mat(EBC.ndro,EBC.dof)*EBC.val;
Matr=Mat(EBC.ndro,EBC.ndro);
Qs=Q(EBC.ndro);

Qr=ilu_gmres_with_EBC(Matr,RHSr,[],GMRES,Qs);

Q=[Qr;EBC.val];        % Augment active dofs with esential (Dirichlet) dofs
Q=Q(EBC.p_vec_undo);   % Restore natural order
   
stime=etime(clock,tclock); % Solution time <<<<<<<<<<<<<<

% ****** APPLY RELAXATION FACTOR *********************
if(NLitr>1) Q=RelxFac*Q+(1-RelxFac)*Q0; end
% ****************************************************

% Compute change and copy dofs to field arrays
dsqp=0; dsqv=0;
for k=1:MaxDof
  ni=nf2nnt(1,k); nx=NodNdx(1,ni); ny=NodNdx(2,ni);
  switch nf2nnt(2,k) % switch on dof type 
    case 1
      dsqp=dsqp+(Q(k)-Q0(k))^2; psi0(ny,nx)=Q(k);
      errpsi(ny,nx)=Q0(k)-Q(k);  
    case 2
      dsqv=dsqv+(Q(k)-Q0(k))^2; u0(ny,nx)=Q(k);
    case 3
      dsqv=dsqv+(Q(k)-Q0(k))^2; v0(ny,nx)=Q(k);
  end  % switch on dof type 
end  % for 
np0(NLitr)=sqrt(dsqp); 
nv0(NLitr)=sqrt(dsqv); 

if (np0(NLitr)<=1e-15|nv0(NLitr)<=1e-15) 
  MaxNLit=NLitr; np0=np0(1:MaxNLit); nv0=nv0(1:MaxNLit);   end;
disp(['(' num2str(NLitr) ') Solution time for linear system = '...
     num2str(etime(clock,tclock)) ' sec']); % Solution time <<<<<<<<<<<<
 
%---------- Begin plot of intermediate results ----------
% ********************** FIGURE 2 *************************
figure(1);

% Stream function (intermediate) 
subplot(2,2,3);
contour(Xgrid,Ygrid,psi0,8,'k');  % Plot contours (trajectories)
axis([Xmin,Xmax,Ymin,Ymax]);
title(['Lid-driven cavity,  Re=' num2str(Re)]);
axis equal; axis image;

% Plot convergence info 
subplot(2,2,2);
semilogy(1:NLitr,nv0(1:NLitr),'k-+',1:NLitr,np0(1:NLitr),'k-o');
xlabel('Nonlinear iteration number');
ylabel('Nonlinear correction');
axis square; 
title(['Iteration conv.,  Re=' num2str(Re)]);
legend('U','Psi');

% Plot nonlinear iteration correction contours 
subplot(2,2,4);
contour(Xgrid,Ygrid,errpsi,8,'k');  % Plot contours (trajectories)
axis([Xmin,Xmax,Ymin,Ymax]);
axis equal; axis image;
title(['Iteration correction']);
pause(1);
% ********************** END FIGURE 2 *************************
%----------  End plot of intermediate results  ---------

if (nv0(NLitr)<1e-15) break; end  % Terminate iteration if non-significant 

end;   % <<< (while) END NONLINEAR ITERATION

format short g;
disp('Convergence results by iteration: velocity, stream function');
disp(['nv0:  ' num2str(nv0)]); disp(['np0:  ' num2str(np0)]); 

% >>>>>>>>>>>>>> BEGIN PRESSURE RECOVERY <<<<<<<<<<<<<<<<<<
% Essential pressure boundary condition 
% Index of node to apply pressure BC, value at node
PBCnx=fix((NumNx+1)/2);   % Apply at center of mesh
PBCny=fix((NumNy+1)/2);
PBCnod=0;
for k=1:NumNod
  if (NodNdx(1,k)==PBCnx & NodNdx(2,k)==PBCny) PBCnod=k; break; end
end
if (PBCnod==0) error('Pressure BC node not found'); 
else
  EBCp.nodn = [PBCnod];  % Pressure BC node number
  EBCp.val = [0];  % set P = 0.
end
% Cubic pressure 
[P,Px,Py] = GetPresW(NumNod,NodNdx,Elcon,nn2nft,Xgrid,Ygrid,Q,EBCp,nu);
% ******************** END PRESSURE RECOVERY *********************

% ********************** CONTINUE FIGURE 1 *************************
figure(1);

% Stream function    (final)
subplot(2,2,3);
[CT,hn]=contour(Xgrid,Ygrid,psi0,CL,'k');  % Plot contours (trajectories)
clabel(CT,hn,CL([1,3,5,7,9,10,11,19,23]));
hold on;
plot([Xmin,Xmin,Xmax,Xmax,Xmin],[Ymax,Ymin,Ymin,Ymax,Ymax],'k');
hold off;
axis([Xmin,Xmax,Ymin,Ymax]);
axis equal;  axis image;
title(['Stream lines, ' num2str(NumNx) 'x' num2str(NumNy) ...
    ' mesh, Re=' num2str(Re)]);

% Plot pressure contours   (final)
subplot(2,2,4);
CPL=[-.002,0,.02,.05,.07,.09,.11,.12,.17,.3];
[CT,hn]=contour(Xgrid,Ygrid,P,CPL,'k');  % Plot pressure contours
clabel(CT,hn,CPL([3,5,7,10]));
hold on;
plot([Xmin,Xmin,Xmax,Xmax,Xmin],[Ymax,Ymin,Ymin,Ymax,Ymax],'k');
hold off;
axis([Xmin,Xmax,Ymin,Ymax]);
axis equal;  axis image;
title(['Simple cubic pressure contours, Re=' num2str(Re)]);
% ********************* END FIGURE 1 *************************

disp(['Total elapsed time = '...
   num2str(etime(clock,ETstart)/60) ' min']); % Elapsed time from start <<<

Diffusion matrix for pressure-free velocity method (DMatW.m)

Convection matrix for pressure-free velocity method (CMatW.m)

Consistent pressure for pressure-free velocity method (GetPresW.m)

GMRES solver with ILU preconditioning and Essential BC (ilu_gmres_with_EBC.m)

Grade node spacing (regrade.m)

references

[1] Holdeman, J. T. (2010), "A Hermite finite element method for incompressible fluid flow", Int. J. Numer. Meth. Fluids, 64: 376-408.

[2] Holdeman, J. T. and Kim, J.W. (2010), "Computation of incompressible thermal flows using Hermite finite elements", Comput. Methods Appl. Mech. Engr., 199: 3297-3304.

[3] Melosh, R. J. (1963), "Basis of derivation of matricies for the direct stifness method", J.A.I.A.A., 1: 1631-1637.

[4] Zienkiewicz, O. C. (1971), The Finite Element Method in Engineering Science, McGraw-Hill, London.

My wiki