CFD Online Logo CFD Online URL
Home > Wiki > Spalart-Allmaras model

Spalart-Allmaras model

From CFD-Wiki

Revision as of 13:46, 11 May 2007 by Jola (Talk | contribs)
Jump to: navigation, search

Spalart-Allmaras model is a one equation model for the turbulent viscosity.


Original model

The turbulent eddy viscosity is given by

\nu_t = \tilde{\nu} f_{v1}, \quad f_{v1} = \frac{\chi^3}{\chi^3 + C^3_{v1}}, \quad \chi := \frac{\tilde{\nu}}{\nu}

\frac{\partial \tilde{\nu}}{\partial t} + u_j \frac{\partial \tilde{\nu}}{\partial x_j} = C_{b1} [1 - f_{t2}] \tilde{S} \tilde{\nu} + \frac{1}{\sigma} \{ \nabla \cdot [(\nu + \tilde{\nu}) \nabla \tilde{\nu}] + C_{b2} | \nabla \nu |^2 \} - \left[C_{w1} f_w - \frac{C_{b1}}{\kappa^2} f_{t2}\right] \left( \frac{\tilde{\nu}}{d} \right)^2 + f_{t1} \Delta U^2

\tilde{S} \equiv S + \frac{ \tilde{\nu} }{ \kappa^2 d^2 } f_{v2}, \quad f_{v2} = 1 - \frac{\chi}{1 + \chi f_{v1}}


S = \equiv \sqrt{2 \Omega_{ij} \Omega_{ij}}
\Omega_{ij} \equiv \frac{1}{2} ( \frac{\partial u_i}{\partial x_j} - \frac{\partial u_j}{\partial x_i} )

d is the distance to the closest surface

f_w = g \left[ \frac{ 1 + C_{w3}^6 }{ g^6 + C_{w3}^6 } \right]^{1/6}, \quad g = r + C_{w2}(r^6 - r), \quad r \equiv \frac{\tilde{\nu} }{ \tilde{S} \kappa^2 d^2 }

f_{t1} = C_{t1} g_t \exp\left( -C_{t2} \frac{\omega_t^2}{\Delta U^2} [ d^2 + g^2_t d^2_t] \right)

f_{t2} = C_{t3} \exp(-C_{t4} \chi^2)

The constants are

\sigma &=& 2/3\\
C_{b1} &=& 0.1355\\
C_{b2} &=& 0.622\\
\kappa &=& 0.41\\
C_{w1} &=& C_{b1}/\kappa^2 + (1 + C_{b2})/\sigma \\
C_{w2} &=& 0.3 \\
C_{w3} &=& 2 \\
C_{v1} &=& 7.1 \\
C_{t1} &=& 1 \\
C_{t2} &=& 2 \\
C_{t3} &=& 1.1 \\
C_{t4} &=& 2

Modifications to original model

According to Spalart it is safer to use the following values for the last two constants:

C_{t3} &=& 1.2 \\
C_{t4} &=& 0.5

[Dacles-Mariani et. al. 1995] proposed a modification of the model which also accounts for the effect of mean strain rate on turbulence production. This modification instead prescribes:

S \equiv |\Omega_{ij}| + C_{\rm prod} \; \min \left(0, |S_{ij}| - |\Omega_{ij}| \right)


C_{\rm prod} = 2.0
|\Omega_{ij}| \equiv \sqrt{2 \Omega_{ij} \Omega_{ij}}
|S_{ij}| \equiv \sqrt{2 S_{ij} S_{ij}}
\Omega_{ij} \equiv \frac{1}{2}\left(\frac{\partial u_j}{\partial x_i} - \frac{\partial u_i}{\partial x_j} \right)
S_{ij} \equiv \frac{1}{2}\left(\frac{\partial u_j}{\partial x_i} + \frac{\partial u_i}{\partial x_j} \right)

Other models related to the S-A model:

DES (1999) [1]

DDES (2006)

Model for compressible flows

There are two approaches to adapting the model for compressible flows. In the first approach the turbulent dynamic viscosity is computed from

\mu_t = \rho \tilde{\nu} f_{v1}

where \rho is the local density. The convective terms in the equation for \tilde{\nu} are modified to

\frac{\partial \tilde{\nu}}{\partial t} + \frac{\partial}{\partial x_j} (\tilde{\nu} u_j)= \mbox{RHS}

where the right hand side (RHS) is the same as in the original model.

Boundary conditions

Walls: \tilde{\nu}=0

Freestream: Ideally \tilde{\nu}=0, but some solvers can have problem with that so \tilde{\nu}<=\frac{\nu}{2} can be used. This is if the trip term is used to "start up" the model. A convenient option is to set \tilde{\nu}=5{\nu} in the freestream. The model then provides fully turbulent results and any regions like boundary layers that contain shear become fully turbulent.

Outlet: convective outlet.


  • Dacles-Mariani, J., Zilliac, G. G., Chow, J. S. and Bradshaw, P. (1995), "Numerical/Experimental Study of a Wingtip Vortex in the Near Field", AIAA Journal, 33(9), pp. 1561-1568, 1995.
  • Spalart, P. R. and Allmaras, S. R. (1992), "A One-Equation Turbulence Model for Aerodynamic Flows", AIAA Paper 92-0439.
  • Spalart, P. R. and Allmaras, S. R. (1994), "A One-Equation Turbulence Model for Aerodynamic Flows", La Recherche Aerospatiale n 1, 5-21.
My wiki