Unstabil Simulation with chtMultiRegionFoam

 Register Blogs Members List Search Today's Posts Mark Forums Read

August 12, 2013, 11:16
Unstabil Simulation with chtMultiRegionFoam
#1
New Member

M Bay
Join Date: Jun 2013
Location: Germany
Posts: 10
Rep Power: 4
Hi everybody,

I m having a hard Time to find the Problem that make OpenFOAM stop simulating my konvektion with chtMultiRegionFoam. It seems that the Problem have something with calcutating h in the Air. That makes my Simulation unstabil.

// * * * * * * * * * * * * *
Code:
```* * * * * * * * * * * * * * * * * * * * * * * * //
Create time
Create fluid mesh for region bottomAir for time = 0
Create solid mesh for region KK for time = 0
*** Reading fluid mesh thermophysical properties for region bottomAir
Selecting thermodynamics package
{
type heRhoThermo;
mixture pureMixture;
transport const;
thermo hConst;
equationOfState perfectGas;
specie specie;
energy sensibleEnthalpy;
}
Selecting turbulence model type laminar
No finite volume options present
*** Reading solid mesh thermophysical properties for region KK
Selecting thermodynamics package
{
type heSolidThermo;
mixture pureMixture;
transport constIso;
thermo hConst;
equationOfState rhoConst;
specie specie;
energy sensibleEnthalpy;
}
Selecting absorptionEmissionModel constantAbsorptionEmission
Selecting scatterModel none
No finite volume options present
Time = 1

Solving for fluid region bottomAir
DILUPBiCG: Solving for Ux, Initial residual = 1, Final residual = 0.0244138, No Iterations 2
DILUPBiCG: Solving for Uy, Initial residual = 1, Final residual = 0.0235651, No Iterations 2
DILUPBiCG: Solving for Uz, Initial residual = 1, Final residual = 0.0249624, No Iterations 2
DILUPBiCG: Solving for h, Initial residual = 1, Final residual = 0.016444, No Iterations 3
Min/max T:292.987 300.021
GAMG: Solving for p_rgh, Initial residual = 0.804056, Final residual = 0.00263329, No Iterations 6
time step continuity errors : sum local = 0.0540164, global = 5.78109e-19, cumulative = 5.78109e-19
Min/max rho:1.15854 1.18635
Solving for solid region KK
DICPCG: Solving for h, Initial residual = 1, Final residual = 0.0205534, No Iterations 2
Min/max T:min(T) [0 0 0 1 0 0 0] 296.988 max(T) [0 0 0 1 0 0 0] 360
ExecutionTime = 1.69 s ClockTime = 1 s
Time = 2

Solving for fluid region bottomAir
DILUPBiCG: Solving for Ux, Initial residual = 0.489481, Final residual = 0.0177715, No Iterations 2
DILUPBiCG: Solving for Uy, Initial residual = 0.215961, Final residual = 0.0114513, No Iterations 2
DILUPBiCG: Solving for Uz, Initial residual = 0.492604, Final residual = 0.0180205, No Iterations 2
DILUPBiCG: Solving for h, Initial residual = 0.407711, Final residual = 0.0253633, No Iterations 2
Min/max T:293.299 307.626
GAMG: Solving for p_rgh, Initial residual = 0.970476, Final residual = 0.00912021, No Iterations 6
time step continuity errors : sum local = 0.0476966, global = -7.11662e-18, cumulative = -6.53851e-18
Min/max rho:1.12815 1.19433
Solving for solid region KK
DICPCG: Solving for h, Initial residual = 0.209485, Final residual = 0.00386612, No Iterations 2
Min/max T:min(T) [0 0 0 1 0 0 0] 296.952 max(T) [0 0 0 1 0 0 0] 360
ExecutionTime = 2.25 s ClockTime = 2 s
Time = 3

Solving for fluid region bottomAir
DILUPBiCG: Solving for Ux, Initial residual = 0.45139, Final residual = 0.0328024, No Iterations 2
DILUPBiCG: Solving for Uy, Initial residual = 0.55513, Final residual = 0.0539866, No Iterations 2
DILUPBiCG: Solving for Uz, Initial residual = 0.454886, Final residual = 0.0282488, No Iterations 3
DILUPBiCG: Solving for h, Initial residual = 0.509759, Final residual = 0.0246587, No Iterations 2
Min/max T:31.9756 316.071
GAMG: Solving for p_rgh, Initial residual = 0.723399, Final residual = 0.00572431, No Iterations 5
time step continuity errors : sum local = 0.0547409, global = 3.87611e-18, cumulative = -2.6624e-18
Min/max rho:0.841215 2
Solving for solid region KK
DICPCG: Solving for h, Initial residual = 0.109023, Final residual = 0.00190129, No Iterations 2
Min/max T:min(T) [0 0 0 1 0 0 0] 296.805 max(T) [0 0 0 1 0 0 0] 360
ExecutionTime = 2.84 s ClockTime = 3 s
Time = 4

Solving for fluid region bottomAir
DILUPBiCG: Solving for Ux, Initial residual = 0.415676, Final residual = 0.00778006, No Iterations 3
DILUPBiCG: Solving for Uy, Initial residual = 0.697505, Final residual = 0.0673045, No Iterations 2
DILUPBiCG: Solving for Uz, Initial residual = 0.414124, Final residual = 0.0344727, No Iterations 2
DILUPBiCG: Solving for h, Initial residual = 0.628609, Final residual = 0.00417972, No Iterations 4
Min/max T:17.0031 363.37
GAMG: Solving for p_rgh, Initial residual = 0.767669, Final residual = 0.00549893, No Iterations 5
time step continuity errors : sum local = 0.108476, global = 7.559e-18, cumulative = 4.8966e-18
Min/max rho:0.53968 2
Solving for solid region KK
DICPCG: Solving for h, Initial residual = 0.0721226, Final residual = 0.0012664, No Iterations 2
Min/max T:min(T) [0 0 0 1 0 0 0] 296.17 max(T) [0 0 0 1 0 0 0] 360
ExecutionTime = 3.41 s ClockTime = 3 s
Time = 5

Solving for fluid region bottomAir
DILUPBiCG: Solving for Ux, Initial residual = 0.34231, Final residual = 0.0171793, No Iterations 2
DILUPBiCG: Solving for Uy, Initial residual = 0.491816, Final residual = 0.0140244, No Iterations 3
DILUPBiCG: Solving for Uz, Initial residual = 0.355791, Final residual = 0.0160844, No Iterations 2
DILUPBiCG: Solving for h, Initial residual = 0.463123, Final residual = 0.0248464, No Iterations 2
Min/max T:148.512 347.184
GAMG: Solving for p_rgh, Initial residual = 0.766683, Final residual = 0.00230729, No Iterations 6
time step continuity errors : sum local = 0.0375931, global = 7.12003e-18, cumulative = 1.20166e-17
Min/max rho:0.944051 2
Solving for solid region KK
DICPCG: Solving for h, Initial residual = 0.0531948, Final residual = 0.0009174, No Iterations 2
Min/max T:min(T) [0 0 0 1 0 0 0] 296.29 max(T) [0 0 0 1 0 0 0] 360
ExecutionTime = 4.05 s ClockTime = 4 s
Time = 6

Solving for fluid region bottomAir
DILUPBiCG: Solving for Ux, Initial residual = 0.407268, Final residual = 0.0273037, No Iterations 2
DILUPBiCG: Solving for Uy, Initial residual = 0.43275, Final residual = 0.0111889, No Iterations 3
DILUPBiCG: Solving for Uz, Initial residual = 0.415631, Final residual = 0.00593571, No Iterations 3
DILUPBiCG: Solving for h, Initial residual = 0.456496, Final residual = 0.0253663, No Iterations 2
Min/max T:212.035 335.633
GAMG: Solving for p_rgh, Initial residual = 0.744447, Final residual = 0.00689067, No Iterations 5
time step continuity errors : sum local = 0.0813514, global = -3.91602e-18, cumulative = 8.10061e-18
Min/max rho:0.983594 1.88713
Solving for solid region KK
DICPCG: Solving for h, Initial residual = 0.0419207, Final residual = 0.000700995, No Iterations 2
Min/max T:min(T) [0 0 0 1 0 0 0] 296.455 max(T) [0 0 0 1 0 0 0] 360
ExecutionTime = 4.65 s ClockTime = 4 s
Time = 7

Solving for fluid region bottomAir
DILUPBiCG: Solving for Ux, Initial residual = 0.387934, Final residual = 0.0327896, No Iterations 2
DILUPBiCG: Solving for Uy, Initial residual = 0.490351, Final residual = 0.0114847, No Iterations 3
DILUPBiCG: Solving for Uz, Initial residual = 0.389361, Final residual = 0.0226725, No Iterations 2
DILUPBiCG: Solving for h, Initial residual = 0.398425, Final residual = 0.00950898, No Iterations 3
Min/max T:119.731 329.884
GAMG: Solving for p_rgh, Initial residual = 0.726224, Final residual = 0.00385633, No Iterations 5
time step continuity errors : sum local = 0.0571994, global = -8.78886e-18, cumulative = -6.88244e-19
Min/max rho:0.587975 2
Solving for solid region KK
DICPCG: Solving for h, Initial residual = 0.0344731, Final residual = 0.000555654, No Iterations 2
Min/max T:min(T) [0 0 0 1 0 0 0] 296.613 max(T) [0 0 0 1 0 0 0] 360
ExecutionTime = 5.24 s ClockTime = 5 s
Time = 8

Solving for fluid region bottomAir
DILUPBiCG: Solving for Ux, Initial residual = 0.28233, Final residual = 0.00608968, No Iterations 3
DILUPBiCG: Solving for Uy, Initial residual = 0.332424, Final residual = 0.0148631, No Iterations 3
DILUPBiCG: Solving for Uz, Initial residual = 0.293554, Final residual = 0.0232985, No Iterations 2
DILUPBiCG: Solving for h, Initial residual = 0.336824, Final residual = 0.0129785, No Iterations 3
Min/max T:179.143 331.62
GAMG: Solving for p_rgh, Initial residual = 0.747343, Final residual = 0.00702316, No Iterations 5
time step continuity errors : sum local = 0.112819, global = -2.7136e-18, cumulative = -3.40184e-18
Min/max rho:0.913078 2
Solving for solid region KK
DICPCG: Solving for h, Initial residual = 0.0292409, Final residual = 0.000453907, No Iterations 2
Min/max T:min(T) [0 0 0 1 0 0 0] 296.653 max(T) [0 0 0 1 0 0 0] 360
ExecutionTime = 5.87 s ClockTime = 6 s
Time = 9

Solving for fluid region bottomAir
DILUPBiCG: Solving for Ux, Initial residual = 0.307796, Final residual = 0.0252584, No Iterations 2
DILUPBiCG: Solving for Uy, Initial residual = 0.200522, Final residual = 0.00505223, No Iterations 3
DILUPBiCG: Solving for Uz, Initial residual = 0.324858, Final residual = 0.0291988, No Iterations 2
DILUPBiCG: Solving for h, Initial residual = 0.380318, Final residual = 0.0079069, No Iterations 3
Min/max T:250.067 333.011
GAMG: Solving for p_rgh, Initial residual = 0.704899, Final residual = 0.00422722, No Iterations 5
time step continuity errors : sum local = 0.0450128, global = -9.44612e-18, cumulative = -1.2848e-17
Min/max rho:0.993519 1.40521
Solving for solid region KK
DICPCG: Solving for h, Initial residual = 0.0253593, Final residual = 0.000378493, No Iterations 2
Min/max T:min(T) [0 0 0 1 0 0 0] 296.511 max(T) [0 0 0 1 0 0 0] 360
ExecutionTime = 6.44 s ClockTime = 6 s
Time = 10

Solving for fluid region bottomAir
DILUPBiCG: Solving for Ux, Initial residual = 0.341598, Final residual = 0.0160249, No Iterations 3
DILUPBiCG: Solving for Uy, Initial residual = 0.440415, Final residual = 0.0410832, No Iterations 2
DILUPBiCG: Solving for Uz, Initial residual = 0.348379, Final residual = 0.0247462, No Iterations 2
DILUPBiCG: Solving for h, Initial residual = 0.31586, Final residual = 0.0288227, No Iterations 2
Min/max T:133.182 334.105
GAMG: Solving for p_rgh, Initial residual = 0.678469, Final residual = 0.00227451, No Iterations 5
time step continuity errors : sum local = 0.0222442, global = 4.5616e-19, cumulative = -1.23918e-17
Min/max rho:0.509166 1.66624
Solving for solid region KK
DICPCG: Solving for h, Initial residual = 0.0224042, Final residual = 0.000321794, No Iterations 2
Min/max T:min(T) [0 0 0 1 0 0 0] 296.18 max(T) [0 0 0 1 0 0 0] 360
ExecutionTime = 7.02 s ClockTime = 7 s
Time = 11

Solving for fluid region bottomAir
DILUPBiCG: Solving for Ux, Initial residual = 0.290416, Final residual = 0.0158395, No Iterations 3
DILUPBiCG: Solving for Uy, Initial residual = 0.394223, Final residual = 0.036334, No Iterations 2
DILUPBiCG: Solving for Uz, Initial residual = 0.29554, Final residual = 0.0250645, No Iterations 2
DILUPBiCG: Solving for h, Initial residual = 0.27665, Final residual = 0.0269377, No Iterations 2
Min/max T:184.884 334.996
GAMG: Solving for p_rgh, Initial residual = 0.719697, Final residual = 0.00671242, No Iterations 5
time step continuity errors : sum local = 0.0882205, global = 4.84435e-18, cumulative = -7.54745e-18
Min/max rho:0.828506 2
Solving for solid region KK
DICPCG: Solving for h, Initial residual = 0.0200846, Final residual = 0.000278391, No Iterations 2
Min/max T:min(T) [0 0 0 1 0 0 0] 295.961 max(T) [0 0 0 1 0 0 0] 360
ExecutionTime = 7.59 s ClockTime = 7 s
Time = 12

Solving for fluid region bottomAir
DILUPBiCG: Solving for Ux, Initial residual = 0.273298, Final residual = 0.0219519, No Iterations 2
DILUPBiCG: Solving for Uy, Initial residual = 0.221847, Final residual = 0.0197972, No Iterations 2
DILUPBiCG: Solving for Uz, Initial residual = 0.288302, Final residual = 0.0204731, No Iterations 2
DILUPBiCG: Solving for h, Initial residual = 0.337786, Final residual = 0.0197126, No Iterations 2
Min/max T:245.752 335.745
GAMG: Solving for p_rgh, Initial residual = 0.690738, Final residual = 0.00637376, No Iterations 5
time step continuity errors : sum local = 0.0617498, global = 1.7233e-18, cumulative = -5.82415e-18
Min/max rho:1.03632 1.44389
Solving for solid region KK
DICPCG: Solving for h, Initial residual = 0.0181846, Final residual = 0.000242582, No Iterations 2
Min/max T:min(T) [0 0 0 1 0 0 0] 295.826 max(T) [0 0 0 1 0 0 0] 360
ExecutionTime = 8.16 s ClockTime = 8 s
Time = 13

Solving for fluid region bottomAir
DILUPBiCG: Solving for Ux, Initial residual = 0.302581, Final residual = 0.00585637, No Iterations 4
DILUPBiCG: Solving for Uy, Initial residual = 0.386143, Final residual = 0.0377692, No Iterations 2
DILUPBiCG: Solving for Uz, Initial residual = 0.30196, Final residual = 0.0255285, No Iterations 2
DILUPBiCG: Solving for h, Initial residual = 0.278727, Final residual = 0.025618, No Iterations 2
Min/max T:245.646 1301.59
GAMG: Solving for p_rgh, Initial residual = 0.653636, Final residual = 0.00617912, No Iterations 4
time step continuity errors : sum local = 0.0538323, global = -1.3988e-18, cumulative = -7.22295e-18
Min/max rho:0.262126 1.63589
Solving for solid region KK
DICPCG: Solving for h, Initial residual = 0.0171027, Final residual = 0.000284466, No Iterations 2
Min/max T:min(T) [0 0 0 1 0 0 0] 295.769 max(T) [0 0 0 1 0 0 0] 360
ExecutionTime = 8.75 s ClockTime = 9 s
Time = 14

Solving for fluid region bottomAir
DILUPBiCG: Solving for Ux, Initial residual = 0.27036, Final residual = 0.0223134, No Iterations 2
DILUPBiCG: Solving for Uy, Initial residual = 0.321986, Final residual = 0.00629441, No Iterations 3
DILUPBiCG: Solving for Uz, Initial residual = 0.264422, Final residual = 0.00736481, No Iterations 3
DILUPBiCG: Solving for h, Initial residual = 0.283332, Final residual = 0.0224435, No Iterations 2
Min/max T:225.238 859.95
GAMG: Solving for p_rgh, Initial residual = 0.669059, Final residual = 0.00379205, No Iterations 6
time step continuity errors : sum local = 0.0360521, global = -4.18486e-19, cumulative = -7.64144e-18
Min/max rho:0.414664 1.80028
Solving for solid region KK
DICPCG: Solving for h, Initial residual = 0.016315, Final residual = 0.000276046, No Iterations 2
Min/max T:min(T) [0 0 0 1 0 0 0] 295.743 max(T) [0 0 0 1 0 0 0] 360
ExecutionTime = 9.35 s ClockTime = 9 s
Time = 15

Solving for fluid region bottomAir
DILUPBiCG: Solving for Ux, Initial residual = 0.214962, Final residual = 0.0152287, No Iterations 2
DILUPBiCG: Solving for Uy, Initial residual = 0.122978, Final residual = 0.0105771, No Iterations 2
DILUPBiCG: Solving for Uz, Initial residual = 0.231511, Final residual = 0.015678, No Iterations 3
DILUPBiCG: Solving for h, Initial residual = 0.239068, Final residual = 0.00535052, No Iterations 3
Min/max T:268.77 679.817
GAMG: Solving for p_rgh, Initial residual = 0.639297, Final residual = 0.00194893, No Iterations 6
time step continuity errors : sum local = 0.020783, global = -2.40931e-18, cumulative = -1.00508e-17
Min/max rho:0.727268 1.84172
Solving for solid region KK
DICPCG: Solving for h, Initial residual = 0.016017, Final residual = 0.000270371, No Iterations 2
Min/max T:min(T) [0 0 0 1 0 0 0] 295.693 max(T) [0 0 0 1 0 0 0] 360
ExecutionTime = 9.96 s ClockTime = 10 s
Time = 16

Solving for fluid region bottomAir
DILUPBiCG: Solving for Ux, Initial residual = 0.220373, Final residual = 0.00644444, No Iterations 3
DILUPBiCG: Solving for Uy, Initial residual = 0.234987, Final residual = 0.0229902, No Iterations 2
DILUPBiCG: Solving for Uz, Initial residual = 0.231552, Final residual = 0.0109475, No Iterations 3
DILUPBiCG: Solving for h, Initial residual = 0.179052, Final residual = 0.00462697, No Iterations 3
Min/max T:280.286 597.52
GAMG: Solving for p_rgh, Initial residual = 0.610836, Final residual = 0.00289421, No Iterations 5
time step continuity errors : sum local = 0.0171758, global = -5.11318e-18, cumulative = -1.51639e-17
Min/max rho:0.319603 1.48612
Solving for solid region KK
DICPCG: Solving for h, Initial residual = 0.0153671, Final residual = 0.000239808, No Iterations 2
Min/max T:min(T) [0 0 0 1 0 0 0] 295.691 max(T) [0 0 0 1 0 0 0] 360
ExecutionTime = 10.58 s ClockTime = 10 s
Time = 17

Solving for fluid region bottomAir
DILUPBiCG: Solving for Ux, Initial residual = 0.26343, Final residual = 0.0217329, No Iterations 2
DILUPBiCG: Solving for Uy, Initial residual = 0.356318, Final residual = 0.0308314, No Iterations 2
DILUPBiCG: Solving for Uz, Initial residual = 0.280643, Final residual = 0.0263077, No Iterations 2
DILUPBiCG: Solving for h, Initial residual = 0.158732, Final residual = 0.00587434, No Iterations 3
Min/max T:-542.333 553.177
GAMG: Solving for p_rgh, Initial residual = 0.647338, Final residual = 0.00512559, No Iterations 6
time step continuity errors : sum local = 0.0307202, global = -1.32267e-18, cumulative = -1.64866e-17
Min/max rho:0.2 2
Solving for solid region KK
DICPCG: Solving for h, Initial residual = 0.0146789, Final residual = 0.00022046, No Iterations 2
Min/max T:min(T) [0 0 0 1 0 0 0] 295.707 max(T) [0 0 0 1 0 0 0] 360
ExecutionTime = 11.2 s ClockTime = 11 s
Time = 18

Solving for fluid region bottomAir
DILUPBiCG: Solving for Ux, Initial residual = 0.209893, Final residual = 0.00490878, No Iterations 3
DILUPBiCG: Solving for Uy, Initial residual = 0.153147, Final residual = 0.0036681, No Iterations 3
DILUPBiCG: Solving for Uz, Initial residual = 0.241414, Final residual = 0.00634049, No Iterations 3
DILUPBiCG: Solving for h, Initial residual = 0.220824, Final residual = 0.00727578, No Iterations 3

--> FOAM FATAL ERROR:
Maximum number of iterations exceeded
From function thermo<Thermo, Type>::T(scalar f, scalar T0, scalar (thermo<Thermo, Type>::*F)(const scalar) const, scalar (thermo<Thermo, Type>::*dFdT)(const scalar) const, scalar (thermo<Thermo, Type>::*limit)(const scalar) const) const
in file /usr2/sw/OpenFOAM//OpenFOAM-2.2.0/src/thermophysicalModels/specie/lnInclude/thermoI.H at line 76.
FOAM aborting
#0 Foam::error::printStack(Foam::Ostream&) in "/cax/sw/OPENFOAM/LINUX_x86_64/OpenFOAM-2.2.0/platforms/linux64GccDPOpt/lib/libOpenFOAM.so"
#1 Foam::error::abort() in "/cax/sw/OPENFOAM/LINUX_x86_64/OpenFOAM-2.2.0/platforms/linux64GccDPOpt/lib/libOpenFOAM.so"
#2 Foam::species::thermo<Foam::hConstThermo<Foam::perfectGas<Foam::specie> >, Foam::sensibleEnthalpy>::T(double, double, double, double (Foam::species::thermo<Foam::hConstThermo<Foam::perfectGas<Foam::specie> >, Foam::sensibleEnthalpy>::*)(double, double) const, double (Foam::species::thermo<Foam::hConstThermo<Foam::perfectGas<Foam::specie> >, Foam::sensibleEnthalpy>::*)(double, double) const, double (Foam::species::thermo<Foam::hConstThermo<Foam::perfectGas<Foam::specie> >, Foam::sensibleEnthalpy>::*)(double) const) const in "/cax/sw/OPENFOAM/LINUX_x86_64/OpenFOAM-2.2.0/platforms/linux64GccDPOpt/lib/libfluidThermophysicalModels.so"
#3 Foam::heRhoThermo<Foam::rhoThermo, Foam::pureMixture<Foam::constTransport<Foam::species::thermo<Foam::hConstThermo<Foam::perfectGas<Foam::specie> >, Foam::sensibleEnthalpy> > > >::calculate() in "/cax/sw/OPENFOAM/LINUX_x86_64/OpenFOAM-2.2.0/platforms/linux64GccDPOpt/lib/libfluidThermophysicalModels.so"
#4 Foam::heRhoThermo<Foam::rhoThermo, Foam::pureMixture<Foam::constTransport<Foam::species::thermo<Foam::hConstThermo<Foam::perfectGas<Foam::specie> >, Foam::sensibleEnthalpy> > > >::correct() in "/cax/sw/OPENFOAM/LINUX_x86_64/OpenFOAM-2.2.0/platforms/linux64GccDPOpt/lib/libfluidThermophysicalModels.so"
#5
in "/cax/sw/OPENFOAM/LINUX_x86_64/OpenFOAM-2.2.0/platforms/linux64GccDPOpt/bin/chtMultiRegionSimpleFoam"
#6 __libc_start_main in "/lib64/libc.so.6"
#7
in "/cax/sw/OPENFOAM/LINUX_x86_64/OpenFOAM-2.2.0/platforms/linux64GccDPOpt/bin/chtMultiRegionSimpleFoam"```
I m thankfull for anything I get
Regards
Attached Images
 Konvergenz.png (8.8 KB, 46 views)

Last edited by wyldckat; August 17, 2013 at 08:17. Reason: Added [CODE][/CODE]

August 25, 2013, 07:40
#2
Super Moderator

Bruno Santos
Join Date: Mar 2009
Location: Lisbon, Portugal
Posts: 8,308
Blog Entries: 34
Rep Power: 84
Greetings mbay101,

I noticed that you've asked a related question here: Foam::error::printStack(Foam::Ostream&) with simpleFoam -parallel post #27

OK, there isn't much information to work with here. The only thing I'm able to see is that your temperature ranges are all over the place - just look at the last few iterations:
Quote:
 Code: ```Min/max T:179.143 331.62 Min/max T:250.067 333.011 Min/max T:133.182 334.105 Min/max T:184.884 334.996 Min/max T:245.752 335.745 Min/max T:245.646 1301.59 Min/max T:225.238 859.95 Min/max T:268.77 679.817 Min/max T:280.286 597.52 Min/max T:-542.333 553.177```
The "rho" values are also all over the place, but a bit more realistic.

Best regards,
Bruno

 August 26, 2013, 03:07 #3 New Member   M Bay Join Date: Jun 2013 Location: Germany Posts: 10 Rep Power: 4 Hi wyldckat, thank you for offering your Help. I solve the Problem but im not satisfied with my solution and to be frank with you I don t quite understand it . After I saw that my solution is very unstabil, I started to change variable in my case and I had succes when i increase the value of mu in thermophsicalProperties. The Problem is that I m trying to simulate the Air and when i use 1,87e-01 insteed of 1,87e-05 that change the velocity of the Air in my Geometrie Re = L.w/nu with nu is kinematic viscosity. Do you have any idea why is my case working only with high kinematic viscosity. Best regards,

 August 26, 2013, 03:21 #4 New Member   M Bay Join Date: Jun 2013 Location: Germany Posts: 10 Rep Power: 4 By the way, sorry if i didn t follow How to give enough info to get help to explain my problem. This Problem is not case relevant. I always get the same problem with diffrent cases. I made a case to describe the situation. Here I tried to simulate a worm Solid in Air (free Konvektion) laminar flow. I mesh my geometry with salome and checkMesh look very good and i never got i problem with the Mesh. I use chtMultiRegionSimpleFoam and i took the system Files from the tutorial (fvScheme, fvSolution and controlDic) I tried to simulate the cases with laminar or turbulent kEpsilon Modell. both ways i needed to increase the viscosity nu to get the case working. how dose that effect my air velocity? or anything else in my case. thank you for any help

August 26, 2013, 04:40
#5
New Member

M Bay
Join Date: Jun 2013
Location: Germany
Posts: 10
Rep Power: 4
Sorry I forgot the case!!

OUT is the Air boundary for the limit of the Region. I can use also wall, but it dosen t seems that big of a diffrence between empty and wall with fixedValue (0 0 0) in U.

Thank you again.
Attached Files
 0_AIR.txt (4.5 KB, 8 views) 0_Cube.txt (2.2 KB, 3 views) constant_AIR.txt (2.7 KB, 6 views) constant_Cube.txt (2.5 KB, 2 views) system_AIR.txt (5.2 KB, 4 views)

 August 27, 2013, 02:10 #7 New Member   M Bay Join Date: Jun 2013 Location: Germany Posts: 10 Rep Power: 4 Hi Bruno, thank you for replying. I will try your Suggestion. Another question: I always bring my Source Heat in the system by giving a fixedValue Temprature on a surface. I would Like to insert now a Heat Flux. can you show me how the Code looks like in OpenFOAM 2.2.0? Inlet_HeatFlux { type compressible::turbulentHeatFluxTemperature; heatSource flux; q uniform 17; kappa solidThermo; kappaName none; value uniform 297; } but this way i can t see any Temperature getting in my System what m i missing here?

 August 27, 2013, 17:28 #8 Super Moderator   Bruno Santos Join Date: Mar 2009 Location: Lisbon, Portugal Posts: 8,308 Blog Entries: 34 Rep Power: 84 Quick answer: I think what you are looking for is this: http://foam.sourceforge.net/docs/cpp...8.html#details I found it through the modules section, under the "Wall boundary Conditions" subsection: http://www.openfoam.org/version2.2.0/documentation.php __________________ OpenFOAM: Frequently Asked Questions | Useful links for building and using Forum: How to ask for help | Posting code and output with [CODE] My to-do list and when I'll be able to come to the forum: http://wyldckat.github.io And please: Read this before sending private messages to me

 December 3, 2013, 04:47 A similar error.. I think #9 Senior Member   Srivathsan N Join Date: Jan 2013 Location: India Posts: 101 Rep Power: 4 Hi Bruno, I also have a "Foam::error:rintStack(Foam::Ostream&)" error appearing when I run my case. However I'm not able to run even one time step. I have a modified heatTransfer solver that uses a user_defined BC for two of the four boundaries in the geometry. blockMesh compiles well. I am running a laminar case and so I've turned turbulence off in the RASproperties. However I get the following when I execute the solver. Code: ```Create time Create mesh for time = 0 Reading g Reading thermophysical properties Reading field T Reading field p_rgh Reading field U Reading/calculating face flux field phi Selecting incompressible transport model Newtonian Creating turbulence model Selecting RAS turbulence model laminar Reading field alphat Calculating field g.h No finite volume options present SIMPLE: convergence criteria field p_rgh tolerance 0.01 field U tolerance 0.0001 field T tolerance 0.01 field "(k|epsilon|omega)" tolerance 0.001 Starting time loop Time = 1e-05 #0 Foam::error::printStack(Foam::Ostream&) in "/opt/openfoam222/platforms/linuxGccDPOpt/lib/libOpenFOAM.so" #1 Foam::sigSegv::sigHandler(int) in "/opt/openfoam222/platforms/linuxGccDPOpt/lib/libOpenFOAM.so" #2 Uninterpreted: #3 Foam::fv::gaussGrad >::correctBoundaryConditions(Foam::GeometricField, Foam::fvPatchField, Foam::volMesh> const&, Foam::GeometricField, Foam::fvPatchField, Foam::volMesh>&) in "/opt/openfoam222/platforms/linuxGccDPOpt/lib/libfiniteVolume.so" #4 Foam::fv::gaussGrad >::calcGrad(Foam::GeometricField, Foam::fvPatchField, Foam::volMesh> const&, Foam::word const&) const in "/opt/openfoam222/platforms/linuxGccDPOpt/lib/libfiniteVolume.so" #5 Foam::fv::gradScheme >::grad(Foam::GeometricField, Foam::fvPatchField, Foam::volMesh> const&, Foam::word const&) const in "/opt/openfoam222/platforms/linuxGccDPOpt/lib/libfiniteVolume.so" #6 Foam::tmp, Foam::Vector >::type, Foam::fvPatchField, Foam::volMesh> > Foam::fvc::grad >(Foam::GeometricField, Foam::fvPatchField, Foam::volMesh> const&) in "/opt/openfoam222/platforms/linuxGccDPOpt/lib/libfiniteVolume.so" #7 Foam::incompressible::RASModels::laminar::divDevReff(Foam::GeometricField, Foam::fvPatchField, Foam::volMesh>&) const in "/opt/openfoam222/platforms/linuxGccDPOpt/lib/libincompressibleRASModels.so" #8 in "/home/srivathsan/OpenFOAM/srivathsan-2.2.2/platforms/linuxGccDPOpt/bin/buoyantBoussinesqSimpleFoamTemp" #9 __libc_start_main in "/lib/i386-linux-gnu/libc.so.6" #10 in "/home/srivathsan/OpenFOAM/srivathsan-2.2.2/platforms/linuxGccDPOpt/bin/buoyantBoussinesqSimpleFoamTemp"``` My doubts: 1. Is this a solver specific error or generic? This is because I get a similar error when I run other modified solvers. 2. How do i rectify it? 3. What does the line #0 mean in the error? __________________ Regards, Srivaths

 December 5, 2013, 00:31 #10 Senior Member   Srivathsan N Join Date: Jan 2013 Location: India Posts: 101 Rep Power: 4 I am able to see that the the solver is not able to access libfiniteVolume.so and libincompressibleRASModels.so for some reason there by not being able to use fvSchemes properly. Otherwise, I'm not able to make any headway with the above error. Any idea anyone? __________________ Regards, Srivaths Last edited by Sherlock_1812; December 6, 2013 at 02:07.

 December 8, 2013, 10:36 #11 Super Moderator   Bruno Santos Join Date: Mar 2009 Location: Lisbon, Portugal Posts: 8,308 Blog Entries: 34 Rep Power: 84 Hi Srivaths, The stack trace is that last part of the output you're seeing, which starts with the #0, down to whichever is the last # number. It gives you a trace of the subroutine call history, which lead to the current crash. The history is in reverse, namely, the first event was #10 and crashed somewhere near #0. So, if we look from #0 to #10, here's what they mean: Code: `#0 Foam::error::printStack(Foam::Ostream&) in "/opt/openfoam222/platforms/linuxGccDPOpt/lib/libOpenFOAM.so"` #0 - this is the method that handles the printing to the output screen/log file of this stack trace. In other words, you're seeing this stack trace, thanks to this method Code: `#1 Foam::sigSegv::sigHandler(int) in "/opt/openfoam222/platforms/linuxGccDPOpt/lib/libOpenFOAM.so"` #1 - SIGSEGV: http://en.wikipedia.org/wiki/Segmentation_fault This is the reason why printStack was called. Code: `#2 Uninterpreted:` #2 - Some uninterpreted machine code was found. Yes, that's exactly what it means: it's not interpreted for human comprehension Code: `#3 Foam::fv::gaussGrad >::correctBoundaryConditions(Foam::GeometricField, Foam::fvPatchField, Foam::volMesh> const&, Foam::GeometricField, Foam::fvPatchField, Foam::volMesh>&) in "/opt/openfoam222/platforms/linuxGccDPOpt/lib/libfiniteVolume.so"` #3 - Remember when you configure in "system/fvSchemes" something about a "gauss grad"? This is a method related to that. It is usually used for solving the equations the solver has defined. This one "corrects boundary conditions", which is why it's called correctBoundaryConditions Code: `#4 Foam::fv::gaussGrad >::calcGrad(Foam::GeometricField, Foam::fvPatchField, Foam::volMesh> const&, Foam::word const&) const in "/opt/openfoam222/platforms/linuxGccDPOpt/lib/libfiniteVolume.so"` #4 - Also part of "gauss grad", but this one does the grad calculation... which at some point call correctBoundaryConditions. Code: `#5 Foam::fv::gradScheme >::grad(Foam::GeometricField, Foam::fvPatchField, Foam::volMesh> const&, Foam::word const&) const in "/opt/openfoam222/platforms/linuxGccDPOpt/lib/libfiniteVolume.so"` #5 - This what called the "gauss grad", since this gradScheme::grad is the more generic method that handles the "grad schemes". Code: `#6 Foam::tmp, Foam::Vector >::type, Foam::fvPatchField, Foam::volMesh> > Foam::fvc::grad >(Foam::GeometricField, Foam::fvPatchField, Foam::volMesh> const&) in "/opt/openfoam222/platforms/linuxGccDPOpt/lib/libfiniteVolume.so"` #6 - Pretty confusing line, isn't it? This requires a person to be very well trained in coding C++, in order to figure out where the method's name is located! If you can't find it, the answer is this: the method name here is "Foam::fvc::grad" Code: `#7 Foam::incompressible::RASModels::laminar::divDevReff(Foam::GeometricField, Foam::fvPatchField, Foam::volMesh>&) const in "/opt/openfoam222/platforms/linuxGccDPOpt/lib/libincompressibleRASModels.so"` #7 - Nice... this one pretty much says it all: divDevReff - the method. laminar - the class for the turbulence model in question. RASModels - the name-space for the RAS Models incompressible - the name-space for the incompressible models. Foam - the main name-space Foam Code: ```#8 in "/home/srivathsan/OpenFOAM/srivathsan-2.2.2/platforms/linuxGccDPOpt/bin/buoyantBoussinesqSimpleFoamTemp"``` #8 - buoyantBoussinesqSimpleFoamTemp - this is your modified solver's name Code: `#9 __libc_start_main in "/lib/i386-linux-gnu/libc.so.6"` #9 - Linux/library C magic Sorry, what meant to say is that this is one of the main libraries that enables us to run C/C++ code. Code: ```#10 in "/home/srivathsan/OpenFOAM/srivathsan-2.2.2/platforms/linuxGccDPOpt/bin/buoyantBoussinesqSimpleFoamTemp"``` #10 - where all of it started... from the solver binary. Yes, it needs to start with some basic code that says something like: "I'm an executable and will libc.so be so kind as to execute the C code part of my binary form?" As for the solution? I don't know. You haven't provided the specific boundary conditions (and initial field values) you're using, nor did you indicate the configurations you have in "fvSchemes" and "fvSolution". Nor did you give the equation you've added to the solver (and where exactly you added it), so I have no clue if there is something wrong in it. Therefore, all I can do is guess... and my guess is that there is a value or field being initiated with 0... although this would lead to a SIGFPE, and not a SIGSEGV ... Best regards, Bruno luiscardona and Sherlock_1812 like this. __________________ OpenFOAM: Frequently Asked Questions | Useful links for building and using Forum: How to ask for help | Posting code and output with [CODE] My to-do list and when I'll be able to come to the forum: http://wyldckat.github.io And please: Read this before sending private messages to me

 December 10, 2013, 03:03 #12 Senior Member   Srivathsan N Join Date: Jan 2013 Location: India Posts: 101 Rep Power: 4 Hi Bruno, Thank you so much for that very detailed post . There were few lines which I couldn't understand in the error but you've explained them all. I have only renamed the solver that way with my own boundary condition for a particular patch. However, I have my RASproperties file reading laminar and I've just kept the default setting for the fields k, epsilon etc. Let me take a while to go back to my case and see if I've missed anything. Thanks a ton, again! __________________ Regards, Srivaths

 December 13, 2013, 02:36 Still persists.. #13 Senior Member   Srivathsan N Join Date: Jan 2013 Location: India Posts: 101 Rep Power: 4 Hi, I've had a look at my case to find out the source of the error and correct it, but I'm not able to. The following are my fvSchemes and fvSolutions files. About the case: Its a modified buoyant solver with my boundary condition for a free surface in the geometry. I've kept the RASproperties file set to laminar and have retained the default settings in the fvSchemes and fvSolutions folder. I'm sure I'm missing something really simple, but what is it? fvSchemes Code: ```FoamFile { version 2.0; format ascii; class dictionary; location "system"; object fvSchemes; } // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // ddtSchemes { default steadyState; } gradSchemes { default Gauss linear; } divSchemes { default none; div(phi,U) bounded Gauss upwind; div(phi,T) bounded Gauss upwind; div(phi,k) bounded Gauss upwind; div(phi,epsilon) bounded Gauss upwind; div((nuEff*dev(T(grad(U))))) Gauss linear; } laplacianSchemes { default none; laplacian(nuEff,U) Gauss linear corrected; laplacian(Dp,p_rgh) Gauss linear corrected; laplacian(alphaEff,T) Gauss linear corrected; laplacian(DREff,R) Gauss linear corrected; laplacian(DkEff,k) Gauss linear corrected; laplacian(DepsilonEff,epsilon) Gauss linear corrected; laplacian(DREff,R) Gauss linear corrected; } interpolationSchemes { default linear; } snGradSchemes { default corrected; } fluxRequired { default no; p_rgh ; }``` fvSolutions: Code: ```FoamFile { version 2.0; format ascii; class dictionary; location "system"; object fvSolution; } // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // solvers { p_rgh { solver PCG; preconditioner DIC; tolerance 1e-08; relTol 0.01; } "(U|T|k|epsilon|R)" { solver PBiCG; preconditioner DILU; tolerance 1e-05; relTol 0.1; } } SIMPLE { nNonOrthogonalCorrectors 0; pRefCell 0; pRefValue 0; residualControl { p_rgh 1e-2; U 1e-4; T 1e-2; // possibly check turbulence fields "(k|epsilon|omega)" 1e-3; } } relaxationFactors { fields { p_rgh 0.7; } equations { U 0.3; T 0.5; "(k|epsilon|R)" 0.7; } }``` __________________ Regards, Srivaths

 December 28, 2013, 14:12 #14 Super Moderator   Bruno Santos Join Date: Mar 2009 Location: Lisbon, Portugal Posts: 8,308 Blog Entries: 34 Rep Power: 84 Hi Srivaths, OK, I've given a quick read to your description and it's still not enough information I'm guessing here, but I think the problem is related to your custom boundary condition. Have a look at the following page: http://openfoamwiki.net/index.php/HowTo_debugging Best regards, Bruno __________________ OpenFOAM: Frequently Asked Questions | Useful links for building and using Forum: How to ask for help | Posting code and output with [CODE] My to-do list and when I'll be able to come to the forum: http://wyldckat.github.io And please: Read this before sending private messages to me

 Thread Tools Display Modes Linear Mode

 Posting Rules You may not post new threads You may not post replies You may not post attachments You may not edit your posts BB code is On Smilies are On [IMG] code is On HTML code is OffTrackbacks are On Pingbacks are On Refbacks are On Forum Rules

 Similar Threads Thread Thread Starter Forum Replies Last Post maddalena OpenFOAM Programming & Development 58 July 16, 2014 02:57 plainstyle OpenFOAM Running, Solving & CFD 15 July 8, 2014 04:43 niels1900 FloEFD, FloWorks & FloTHERM 6 April 20, 2011 10:44 sega OpenFOAM Running, Solving & CFD 4 November 3, 2008 15:29 Ralf Schmidt FLUENT 2 May 4, 2007 13:02

All times are GMT -4. The time now is 14:08.