CFD Online Logo CFD Online URL
www.cfd-online.com
[Sponsors]
Home > Forums > General Forums > Main CFD Forum

Non-dimensionalizing Navier Stokes

Register Blogs Community New Posts Updated Threads Search

Like Tree15Likes
  • 10 Post By VincentD
  • 1 Post By VincentD
  • 2 Post By asal
  • 2 Post By asal

 
 
LinkBack Thread Tools Search this Thread Display Modes
Prev Previous Post   Next Post Next
Old   November 21, 2011, 08:29
Default Non-dimensionalizing Navier Stokes
  #1
New Member
 
Vincent
Join Date: Jul 2011
Posts: 29
Rep Power: 14
VincentD is on a distinguished road
This post is in response to a message I recieved of someone that wanted to have a more detailed explanation on how to obtain the non-dimensional NS equations. Since others might be interested (and the fact that I like this tex compiler) I posted on this forum.

For starters we introduce the Navier Stokes equations and look at the x-direction component:
\rho \Big(\frac{\partial v_x}{\partial t} + v_x\frac{\partial v_x}{\partial x} + v_y\frac{\partial v_x}{\partial y} + v_z\frac{\partial v_x}{\partial z}\Big) = - \frac{\partial p}{\partial x} + \mu \Big(\frac{\partial^2 v_x}{\partial x^2} + \frac{\partial^2 v_x}{\partial y^2} + \frac{\partial^2 v_x}{\partial z^2}\Big)
We assume no additional body forces. The components of the velocity field v are denoted by subscripts (x,y,z). The pressure is given by p and \rho is the density.

First we divide by the density \rho in order to simplify the equation.
\frac{\partial v_x}{\partial t} + v_x\frac{\partial v_x}{\partial x} + v_y\frac{\partial v_x}{\partial y} + v_z\frac{\partial v_x}{\partial z} = - \frac{1}{\rho} \frac{\partial p}{\partial x} + \nu \Big(\frac{\partial^2 v_x}{\partial x^2} + \frac{\partial^2 v_x}{\partial y^2} + \frac{\partial^2 v_x}{\partial z^2}\Big)
The reader should check that indeed each terms has a dimension equal to \frac{m}{s^2}. Now in order to obtaint the non-dimensional equation we make the following substitutions.
v_x = v_x^* V

p = p^* {V^2 \rho}

t = t^* T

x = x^* H

y = y^* H

z = z^* H

Quantities with a superscript star are dimensionless quantities and the capital letters V and H have dimensions \frac{m}{s} and m respectively.
Please check that these substitutions are indeed valid. For instance the physical length is 4 m. We decide to take the length H equal to 1 m, giving a non-dimensionalised length of 4.

Using the above substitutions we end up with the following equation:
\frac{\partial v_x^* V}{\partial t^* T} + v_x^* V\frac{\partial v_x^* V}{\partial x^* H} + v_y^* V\frac{\partial v_x^* V}{\partial y^* H} + v_z^* V\frac{\partial v_x^* V}{\partial z^* H}= - \frac{1}{\rho} \frac{\partial p^* V^2 \rho}{\partial x^* H } + \nu \Big(\frac{\partial^2 v_x^* V}{\partial {x^*}^2 H^2} + \frac{\partial^2 v_x^* V}{\partial {y^*}^2 H} + \frac{\partial^2 v_x^* V}{\partial {z^*}^2 H^2}\Big)

We simplify this equation and use that T = H/V.

\frac{\partial v_x^*}{\partial t^*} + v_x^* \frac{\partial v_x^*}{\partial x^*} + v_y^* \frac{\partial v_x^*}{\partial y^*} + v_z^*\frac{\partial v_x^*}{\partial z^*}= - \frac{\partial p^*}{\partial x^*} + \nu \frac{1}{V H} \Big(\frac{\partial^2 v_x^*}{\partial {x^*}^2} + \frac{\partial^2 v_x^*}{\partial {y^*}^2} + \frac{\partial^2 v_x^*}{\partial {z^*}^2}\Big)

Here \frac{\nu}{V H} is our inverse reynolds number.

\frac{\partial v_x^*}{\partial t^*} + v_x^* \frac{\partial v_x^*}{\partial x^*} + v_y^* \frac{\partial v_x^*}{\partial y^*} + v_z^*\frac{\partial v_x^*}{\partial z^*}= - \frac{\partial p^*}{\partial x^*} + \frac{1}{Re} \Big(\frac{\partial^2 v_x^*}{\partial {x^*}^2} + \frac{\partial^2 v_x^*}{\partial {y^*}^2} + \frac{\partial^2 v_x^*}{\partial {z^*}^2}\Big)

Where Re is defined as \frac{V H}{\nu}. Now we have non-dimensionalised the NS equations. Please rememeber that if you solve this equation you will end up with the nondimensionalised quantities. In order to revert them to physical quantities you will need to use the equation we proposed above when we non-dimensionalised the quantities.

Good luck!

Regards,

Vincent
VincentD is offline   Reply With Quote

 


Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is Off
Trackbacks are Off
Pingbacks are On
Refbacks are On


Similar Threads
Thread Thread Starter Forum Replies Last Post
Filtered navier stokes equation..LES:: Palani Velladurai Main CFD Forum 7 September 6, 2013 02:51
Adding a term to Navier Stokes Equation ashtonJ CFX 3 January 15, 2011 06:32
Navier stokes compresible viscid flow fea, somebody can help? Jose Choy Main CFD Forum 3 October 24, 2003 02:28
Newbie:Viscoelasticity and Navier stokes equation Rajil Saraswat Main CFD Forum 2 June 9, 2003 07:21
help: I am trying to solve Navier Stokes compressible and viscid flow Jose Choy Main CFD Forum 2 May 18, 2000 05:45


All times are GMT -4. The time now is 00:10.