CFD Online Logo CFD Online URL
www.cfd-online.com
[Sponsors]
Home > Forums > Software User Forums > SU2

Results are not converging for Full Aircaft Geometry

Register Blogs Community New Posts Updated Threads Search

 
 
LinkBack Thread Tools Search this Thread Display Modes
Prev Previous Post   Next Post Next
Old   September 20, 2018, 01:01
Default Results are not converging for Full Aircaft Geometry
  #1
New Member
 
Akshay Malik
Join Date: Jul 2016
Posts: 13
Rep Power: 9
akki_malik is on a distinguished road
I am using SU2 6.0 version and trying to simulate flow over a full aircraft geometry, mesh size is appx. 4 million, I have tried several combinations of multi-grid parameters, But the results never converge, the following is a sample configuration file as I can not attach the original one.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% SU2 configuration file %
% Case description: ONERA M6 wing in inviscid, transonic flow %
% Author: Thomas D. Economon %
% Institution: Stanford University %
% Date: 2015.08.25 %
% File Version 5.0.0 "Raven" %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% ------------- DIRECT, ADJOINT, AND LINEARIZED PROBLEM DEFINITION ------------%
%
% Physical governing equations (EULER, NAVIER_STOKES)
PHYSICAL_PROBLEM= NAVIER_STOKES
%
% Mathematical problem (DIRECT, CONTINUOUS_ADJOINT)
MATH_PROBLEM= DIRECT
%
% Restart solution (NO, YES)
RESTART_SOL= NO
%
% Write binary restart files (YES, NO)
WRT_BINARY_RESTART= NO
%
% Read binary restart files (YES, NO)
READ_BINARY_RESTART= NO

% -------------------- COMPRESSIBLE FREE-STREAM DEFINITION --------------------%
%
% Mach number (non-dimensional, based on the free-stream values)
MACH_NUMBER= 0.7
%
% Angle of attack (degrees)
AOA= 15.0
%
% Side-slip angle (degrees)
SIDESLIP_ANGLE= 0.0
%
% Free-stream pressure (101325.0 N/m^2 by default, only for Euler equations)
FREESTREAM_PRESSURE= 101325.0
%
% Free-stream temperature (288.15 K by default)
FREESTREAM_TEMPERATURE= 288.15

% ---------------------- REFERENCE VALUE DEFINITION ---------------------------%
%
% Reference origin for moment computation
REF_ORIGIN_MOMENT_X = 7.0
REF_ORIGIN_MOMENT_Y = 0.00
REF_ORIGIN_MOMENT_Z = 1.00
%
% Reference length for pitching, rolling, and yaMAIN_BOX non-dimensional moment
REF_LENGTH= 5.0
%
% Reference area for force coefficients (0 implies automatic calculation)
REF_AREA= 20
%
% Flow non-dimensionalization (DIMENSIONAL, FREESTREAM_PRESS_EQ_ONE,
% FREESTREAM_VEL_EQ_MACH, FREESTREAM_VEL_EQ_ONE)
REF_DIMENSIONALIZATION= FREESTREAM_VEL_EQ_ONE

% ----------------------- BOUNDARY CONDITION DEFINITION -----------------------%
%
% Marker of the Euler boundary (0 implies no marker)
MARKER_HEATFLUX= ( UPPER_SIDE,0.0, LOWER_SIDE,0.0, TIP,0.0 )
%
% Marker of the far field (0 implies no marker)
MARKER_FAR= ( XNORMAL_FACES, ZNORMAL_FACES, YNORMAL_FACE )
%
% Marker of symmetry boundary (0 implies no marker)
MARKER_SYM= ( SYMMETRY_FACE )
%
% Marker of the surface which is going to be plotted
MARKER_PLOTTING= ( UPPER_SIDE, LOWER_SIDE, TIP )
%
% Marker of the surface where the functional (Cd, Cl, etc.) will be evaluated
MARKER_MONITORING= ( UPPER_SIDE, LOWER_SIDE, TIP )

% ------------- COMMON PARAMETERS TO DEFINE THE NUMERICAL METHOD --------------%
%
% Numerical method for spatial gradients (GREEN_GAUSS, WEIGHTED_LEAST_SQUARES)
NUM_METHOD_GRAD= WEIGHTED_LEAST_SQUARES
%
% Objective function in gradient evaluation (DRAG, LIFT, SIDEFORCE, MOMENT_X,
% MOMENT_Y, MOMENT_Z, EFFICIENCY,
% EQUIVALENT_AREA, NEARFIELD_PRESSURE,
% FORCE_X, FORCE_Y, FORCE_Z, THRUST,
% TORQUE, FREE_SURFACE, TOTAL_HEATFLUX,
% MAXIMUM_HEATFLUX, INVERSE_DESIGN_PRESSURE,
% INVERSE_DESIGN_HEATFLUX)
OBJECTIVE_FUNCTION= DRAG
%
% Courant-Friedrichs-Lewy condition of the finest grid
CFL_NUMBER= 0.005
%
% Adaptive CFL number (NO, YES)
CFL_ADAPT= NO
%
% Parameters of the adaptive CFL number (factor down, factor up, CFL min value,
% CFL max value )
CFL_ADAPT_PARAM= ( 1.5, 0.5, 0.005, 10.0 )
%
% Runge-Kutta alpha coefficients
RK_ALPHA_COEFF= ( 0.66667, 0.66667, 1.000000 )
%
% Number of total iterations
EXT_ITER= 99999
%
% Linear solver for the implicit formulation (BCGSTAB, FGMRES)
LINEAR_SOLVER= FGMRES
%
% Preconditioner of the Krylov linear solver (ILU, LU_SGS, LINELET, JACOBI)
LINEAR_SOLVER_PREC= ILU
%
% Min error of the linear solver for the implicit formulation
LINEAR_SOLVER_ERROR= 1E-6
%
% Max number of iterations of the linear solver for the implicit formulation
LINEAR_SOLVER_ITER= 5

% ----------------------- SLOPE LIMITER DEFINITION ----------------------------%
%
% Coefficient for the limiter
VENKAT_LIMITER_COEFF= 0.03
%
% Coefficient for the sharp edges limiter
ADJ_SHARP_LIMITER_COEFF= 3.0
%
% Reference coefficient (sensitivity) for detecting sharp edges.
REF_SHARP_EDGES= 3.0
%
% Remove sharp edges from the sensitivity evaluation (NO, YES)
SENS_REMOVE_SHARP= YES

% -------------------------- MULTIGRID PARAMETERS -----------------------------%
%
% Multi-Grid Levels (0 = no multi-grid)
MGLEVEL= 3
%
% Multi-grid cycle (V_CYCLE, W_CYCLE, FULLMG_CYCLE)
MGCYCLE= W_CYCLE
%
% Multi-Grid PreSmoothing Level
MG_PRE_SMOOTH= ( 0.5, 0.5, 0.5, 0.5 )
%
% Multi-Grid PostSmoothing Level
MG_POST_SMOOTH= ( 0.5, 0.5, 0.5, 0.5 )
%
% Jacobi implicit smoothing of the correction
MG_CORRECTION_SMOOTH= ( 0.5, 0.5, 0.5, 0.5 )
%
% Damping factor for the residual restriction
MG_DAMP_RESTRICTION= 0.7
%
% Damping factor for the correction prolongation
MG_DAMP_PROLONGATION= 0.7

% -------------------- FLOW NUMERICAL METHOD DEFINITION -----------------------%
%
% Convective numerical method (JST, LAX-FRIEDRICH, CUSP, ROE, AUSM, HLLC,
% TURKEL_PREC, MSW)
CONV_NUM_METHOD_FLOW= ROE
%
% 2nd and 4th order artificial dissipation coefficients
JST_SENSOR_COEFF= ( 0.5, 0.02 )
%
% Time discretization (RUNGE-KUTTA_EXPLICIT, EULER_IMPLICIT, EULER_EXPLICIT)
TIME_DISCRE_FLOW= EULER_IMPLICIT

% --------------------------- CONVERGENCE PARAMETERS --------------------------&
%
% Convergence criteria (CAUCHY, RESIDUAL)
CONV_CRITERIA= RESIDUAL
%
% Residual reduction (order of magnitude with respect to the initial value)
RESIDUAL_REDUCTION= 8
%
% Min value of the residual (log10 of the residual)
RESIDUAL_MINVAL= -12
%
% Start convergence criteria at iteration number
STARTCONV_ITER= 25
%
% Number of elements to apply the criteria
CAUCHY_ELEMS= 100
%
% Epsilon to control the series convergence
CAUCHY_EPS= 1E-10
%
% Function to apply the criteria (LIFT, DRAG, NEARFIELD_PRESS, SENS_GEOMETRY,
% SENS_MACH, DELTA_LIFT, DELTA_DRAG)
CAUCHY_FUNC_FLOW= DRAG

% ------------------------- INPUT/OUTPUT INFORMATION --------------------------%
%
% Mesh input file
MESH_FILENAME= mesh_ONERAM6_inv_ffd.su2
%
% Mesh output file
MESH_OUT_FILENAME= mesh_out.su2
%
% Restart flow input file
SOLUTION_FLOW_FILENAME= solution_flow.dat
%
% Restart adjoint input file
SOLUTION_ADJ_FILENAME= solution_adj.dat
%
% Mesh input file format (SU2)
MESH_FORMAT= SU2
%
% Output file format (PARAVIEW, TECPLOT)
OUTPUT_FORMAT= TECPLOT
%
% Output file convergence history
CONV_FILENAME= history
%
% Output file restart flow
RESTART_FLOW_FILENAME= restart_flow.dat
%
% Output file restart adjoint
RESTART_ADJ_FILENAME= restart_adj.dat
%
% Output file flow (w/o extension) variables
VOLUME_FLOW_FILENAME= flow
%
% Output file adjoint (w/o extension) variables
VOLUME_ADJ_FILENAME= adjoint
%
% Output Objective function gradient (using continuous adjoint)
GRAD_OBJFUNC_FILENAME= of_grad.dat
%
% Output file surface flow coefficient (w/o extension)
SURFACE_FLOW_FILENAME= surface_flow
%
% Output file surface adjoint coefficient (w/o extension)
SURFACE_ADJ_FILENAME= surface_adjoint
%
% Writing solution frequency
WRT_SOL_FREQ= 100
%
% Writing convergence history frequency
WRT_CON_FREQ= 1



If anyone has done simulation on full aircraft geometry, Please help.
akki_malik is offline   Reply With Quote

 

Tags
convergence failure, full aircraft


Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is Off
Trackbacks are Off
Pingbacks are On
Refbacks are On


Similar Threads
Thread Thread Starter Forum Replies Last Post
Simulate particle/liquid flow in a converging geometry with MPPICFoam minzhang OpenFOAM Running, Solving & CFD 4 August 2, 2019 17:35
How to determine the distance between points on Converging diverging nozzle geometry Sorwar22 FLUENT 0 December 4, 2017 20:07
[ANSYS Meshing] CATIA Geometry Generation and Meshing danielsullivan ANSYS Meshing & Geometry 0 April 3, 2017 21:11
Problems with repeating results Lee Siemens 4 May 26, 2006 03:39
Virtual/Real geometry. Jack Keays FLUENT 9 June 15, 2000 23:39


All times are GMT -4. The time now is 04:56.