CFD Online Logo CFD Online URL
www.cfd-online.com
[Sponsors]
Home > Forums > General Forums > CFD Freelancers

Having problems with validating results

Register Blogs Members List Search Today's Posts Mark Forums Read

Reply
 
LinkBack Thread Tools Search this Thread Display Modes
Old   June 30, 2022, 03:30
Default Having problems with validating results
  #1
New Member
 
PPB
Join Date: Feb 2021
Posts: 1
Rep Power: 0
Lucifeanix is on a distinguished road
Hello Everyone
I have just started learning SU2 (the latest version) two months back and was trying the replicate the 'Axisymmetric shock wave-boundary layer interaction case given on the NASA turbulence modeling website (https://turbmodels.larc.nasa.gov/axiswblim7_val.html). I have used the grids given on the website. I have attached the CFG file for my simulation below. The simulation runs just fine and has a pretty decent convergence (residual plots attached below (names represent the grid used)) but the results do not match with the ones given on the website (pressure plots attached below for respective grids). Kindly point out any errors that seem to be there and any other changes that I should incorporate.
This is my first post on the thread. I apologize for missing out on any forum etiquette. I would be extremely obliged to receive any kind of help.

Thank You

####Code for Simulation####
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% SU2 configuration file %
% Case description: Turbulent flow past the ONERA M6 wing %
% File Version 5.0.0 "Raven" %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% ------------- DIRECT, ADJOINT, AND LINEARIZED PROBLEM DEFINITION ------------%
%
% Physical governing equations (EULER, NAVIER_STOKES,
% WAVE_EQUATION, HEAT_EQUATION, FEM_ELASTICITY,
% POISSON_EQUATION)
SOLVER= RANS
%
% Specify turbulence model (NONE, SA, SA_NEG, SST)
KIND_TURB_MODEL= SA
%
% Mathematical problem (DIRECT, CONTINUOUS_ADJOINT)
MATH_PROBLEM= DIRECT
%
% Restart solution (NO, YES)
RESTART_SOL= NO
%
% System of measurements (SI, US)
SYSTEM_MEASUREMENTS= SI
%
% Axisymmetric simulation, only compressible flows (NO, YES)
AXISYMMETRIC= NO

% -------------------- COMPRESSIBLE FREE-STREAM DEFINITION --------------------%
%
% Mach number (non-dimensional, based on the free-stream values)
MACH_NUMBER= 7.11
%
% Angle of attack (degrees, only for compressible flows)
AOA= 0
%
% Side-slip angle (degrees, only for compressible flows)
SIDESLIP_ANGLE= 0.0
%
% Init option to choose between Reynolds (default) or thermodynamics quantities
% for initializing the solution (REYNOLDS, TD_CONDITIONS)
INIT_OPTION= REYNOLDS
%
% Free-stream option to choose between density and temperature (default) for
% initializing the solution (TEMPERATURE_FS, DENSITY_FS)
FREESTREAM_OPTION= TEMPERATURE_FS
%
% Free-stream temperature (288.15 K by default)
FREESTREAM_TEMPERATURE= 80
%
FREESTREAM_PRESSURE= 550.13
%
% Reynolds number (non-dimensional, based on the free-stream values)
REYNOLDS_NUMBER= 5706000.00
%
% Reynolds length (1 m by default)
REYNOLDS_LENGTH= 1
%
FREESTREAM_TURB2LAMVISCRATIO= 5.0

% ---- IDEAL GAS, POLYTROPIC, VAN DER WAALS AND PENG ROBINSON CONSTANTS -------%
%
% Different gas model (STANDARD_AIR, IDEAL_GAS, VW_GAS, PR_GAS)
FLUID_MODEL= IDEAL_GAS
%
GAS_MODEL= AIR-5
%
GAS_COMPOSITION= (0.77, 0.23, 0.0, 0.0, 0.0)
%
% Ratio of specific heats (1.4 default and the value is hardcoded
% for the model STANDARD_AIR)
GAMMA_VALUE= 1.4
%
% Specific gas constant (287.058 J/kg*K default and this value is hardcoded
% for the model STANDARD_AIR)
GAS_CONSTANT= 287.058

% --------------------------- VISCOSITY MODEL ---------------------------------%
%
% Viscosity model (SUTHERLAND, CONSTANT_VISCOSITY).
VISCOSITY_MODEL= SUTHERLAND
%
% Sutherland Viscosity Ref (1.716E-5 default value for AIR SI)
MU_REF= 1.716E-5
%
% Sutherland Temperature Ref (273.15 K default value for AIR SI)
MU_T_REF= 273.15
%
% Sutherland constant (110.4 default value for AIR SI)
SUTHERLAND_CONSTANT= 110.4

% --------------------------- THERMAL CONDUCTIVITY MODEL ----------------------%
%
% Conductivity model (CONSTANT_CONDUCTIVITY, CONSTANT_PRANDTL).
CONDUCTIVITY_MODEL= CONSTANT_PRANDTL
%
% Molecular Thermal Conductivity that would be constant (0.0257 by default)
THERMAL_CONDUCTIVITY_CONSTANT= 0.0257
%
% Laminar Prandtl number (0.72 (air), only for CONSTANT_PRANDTL)
PRANDTL_LAM= 0.72
%
% Temperature polynomial coefficients (up to quartic) for conductivity.
% Format -> Kt(T) : b0 + b1*T + b2*T^2 + b3*T^3 + b4*T^4
KT_POLYCOEFFS= (0.0, 0.0, 0.0, 0.0, 0.0)
%
% Definition of the turbulent thermal conductivity model for RANS
% (CONSTANT_PRANDTL_TURB by default, NONE).
TURBULENT_CONDUCTIVITY_MODEL= CONSTANT_PRANDTL_TURB
%
% Turbulent Prandtl number (0.9 (air), only for CONSTANT_PRANDTL)
PRANDTL_TURB= 0.90

% ---------------------- REFERENCE VALUE DEFINITION ---------------------------%
%
% Reference origin for moment computation
REF_ORIGIN_MOMENT_X = 0.00
REF_ORIGIN_MOMENT_Y = 0.00
REF_ORIGIN_MOMENT_Z = 0.00
%
% Reference length for pitching, rolling, and yawing non-dimensional moment
REF_LENGTH= 1.0
%
% Reference area for force coefficients (0 implies automatic calculation)
REF_AREA= 1
%
% Compressible flow non-dimensionalization (DIMENSIONAL, FREESTREAM_PRESS_EQ_ONE,
% FREESTREAM_VEL_EQ_MACH, FREESTREAM_VEL_EQ_ONE)
REF_DIMENSIONALIZATION= DIMENSIONAL

% -------------------- BOUNDARY CONDITION DEFINITION --------------------------%
%
% Navier-Stokes wall boundary marker(s) (NONE = no marker)
MARKER_ISOTHERMAL= ( isothermal_wall, 311.0 )
%
% Far-field boundary marker(s) (NONE = no marker)
MARKER_FAR= ( inlet_freestream )
%MARKER_INLET= ( inlet_freestream, 888.8336, 2574482.89513, 1.0, 0.0, 0.0 )
%
MARKER_OUTLET= ( outlet, 563.162 )
%
% Periodic boundary marker(s) (NONE = no marker)
% Format: ( periodic marker, donor marker, rotation_center_x, rotation_center_y,
% rotation_center_z, rotation_angle_x-axis, rotation_angle_y-axis,
% rotation_angle_z-axis, translation_x, translation_y, translation_z, ... )
MARKER_PERIODIC= ( periodic_start, periodic_end, 0.0, 0.0, 0.0, 359.0, 0.0, 0.0, 0.0, 0.0, 0.0 )
%
% Marker(s) of the surface to be plotted or designed
MARKER_PLOTTING= ( periodic_start )
%
% Marker(s) of the surface where the functional (Cd, Cl, etc.) will be evaluated
MARKER_MONITORING= ( periodic_start )

% ------------- COMMON PARAMETERS DEFINING THE NUMERICAL METHOD ---------------%
%
% Numerical method for spatial gradients (GREEN_GAUSS, WEIGHTED_LEAST_SQUARES)
NUM_METHOD_GRAD= WEIGHTED_LEAST_SQUARES
%
% Courant-Friedrichs-Lewy condition of the finest grid
CFL_NUMBER= 0.5
%
% Adaptive CFL number (NO, YES)
CFL_ADAPT= NO
%
% Parameters of the adaptive CFL number (factor down, factor up, CFL min value,
% CFL max value )
CFL_ADAPT_PARAM= ( 0.1, 2.0, 0.1 , 200.0 )
%
% Runge-Kutta alpha coefficients
RK_ALPHA_COEFF= ( 0.66667, 0.66667, 1.000000 )
%
% Number of total iterations
ITER= 100001

% ------------------------ LINEAR SOLVER DEFINITION ---------------------------%
%
% Linear solver for the implicit (or discrete adjoint) formulation (BCGSTAB, FGMRES)
LINEAR_SOLVER= FGMRES
%
% Preconditioner of the Krylov linear solver (NONE, JACOBI, LINELET)
LINEAR_SOLVER_PREC= ILU
%
% Linear solver ILU preconditioner fill-in level (0 by default)
LINEAR_SOLVER_ILU_FILL_IN= 0
%
% Min error of the linear solver for the implicit formulation
LINEAR_SOLVER_ERROR= 1E-10
%
% Max number of iterations of the linear solver for the implicit formulation
LINEAR_SOLVER_ITER= 20

% -------------------------- MULTIGRID PARAMETERS -----------------------------%
%
% Multi-Grid Levels (0 = no multi-grid)
MGLEVEL= 0
%

% -------------------- FLOW NUMERICAL METHOD DEFINITION -----------------------%
%
% Convective numerical method (JST, LAX-FRIEDRICH, CUSP, ROE, AUSM, HLLC,
% TURKEL_PREC, MSW)
CONV_NUM_METHOD_FLOW= AUSM
%
% Spatial numerical order integration (1ST_ORDER, 2ND_ORDER, 2ND_ORDER_LIMITER)
MUSCL_FLOW= NO
%
% Slope limiter (NONE, VENKATAKRISHNAN, VENKATAKRISHNAN_WANG,
% BARTH_JESPERSEN, VAN_ALBADA_EDGE)
SLOPE_LIMITER_FLOW= VENKATAKRISHNAN
%
% Coefficient for the Venkat's limiter (upwind scheme). A larger values decrease
% the extent of limiting, values approaching zero cause
% lower-order approximation to the solution (0.05 by default)
VENKAT_LIMITER_COEFF= 0.05
%
% 2nd and 4th order artificial dissipation coefficients for
% the JST method ( 0.5, 0.02 by default )
JST_SENSOR_COEFF= ( 0.5, 0.02 )
%
% Time discretization (RUNGE-KUTTA_EXPLICIT, EULER_IMPLICIT, EULER_EXPLICIT)
TIME_DISCRE_FLOW= EULER_IMPLICIT

% -------------------- TURBULENT NUMERICAL METHOD DEFINITION ------------------%
%
% Convective numerical method (SCALAR_UPWIND)
CONV_NUM_METHOD_TURB= SCALAR_UPWIND
%
% Monotonic Upwind Scheme for Conservation Laws (TVD) in the turbulence equations.
% Required for 2nd order upwind schemes (NO, YES)
MUSCL_TURB= NO
%
% Slope limiter (VENKATAKRISHNAN, MINMOD)
SLOPE_LIMITER_TURB= VENKATAKRISHNAN
%
% Time discretization (EULER_IMPLICIT)
TIME_DISCRE_TURB= EULER_IMPLICIT

% --------------------------- CONVERGENCE PARAMETERS --------------------------%
%
% Convergence criteria (CAUCHY, RESIDUAL)
CONV_FIELD= RESIDUAL
%
% Start convergence criteria at iteration number
CONV_STARTITER= 10
%
% Min value of the residual (log10 of the residual)
CONV_RESIDUAL_MINVAL= -20
%
% Number of elements to apply the criteria
CONV_CAUCHY_ELEMS= 100
%
% Epsilon to control the series convergence
CONV_CAUCHY_EPS= 1E-6
%

% ------------------------- INPUT/OUTPUT INFORMATION --------------------------%
%
% Mesh input file
MESH_FILENAME= 81x101_ASWBLI_mesh_3D.su2
%
% Mesh input file format (SU2, CGNS, NETCDF_ASCII)
MESH_FORMAT= SU2
%
% Mesh output file
MESH_OUT_FILENAME= mesh_out.su2
%
% Restart flow input file
SOLUTION_FILENAME= solution_flow.dat
%
% Restart adjoint input file
SOLUTION_ADJ_FILENAME= solution_adj.dat
%
% Output file format (PARAVIEW, TECPLOT, STL)
TABULAR_FORMAT= CSV
%
OUTPUT_FILES= (PARAVIEW, SURFACE_PARAVIEW)
%
% Output file convergence history (w/o extension)
CONV_FILENAME= history
%
% Output file restart flow
RESTART_FILENAME= restart_flow.dat
%
% Output file restart adjoint
RESTART_ADJ_FILENAME= restart_adj.dat
%
% Output file flow (w/o extension) variables
VOLUME_FILENAME= flow
%
% Output objective function gradient (using continuous adjoint)
GRAD_OBJFUNC_FILENAME= of_grad.dat
%
% Output file surface flow coefficient (w/o extension)
SURFACE_FILENAME= surface_flow
%
% Writing solution file frequency
OUTPUT_WRT_FREQ= 5000
%
% Screen output
SCREEN_OUTPUT= (INNER_ITER, WALL_TIME, RMS_DENSITY, RMS_MOMENTUM-X, RMS_MOMENTUM-Y, RMS_ENERGY)
Attached Images
File Type: jpg 81x101.jpg (70.9 KB, 13 views)
File Type: jpg 41x51.jpg (63.2 KB, 10 views)
File Type: jpg 81x101 pressure.jpg (103.3 KB, 9 views)
File Type: jpg 41x51 pressure.jpg (105.2 KB, 9 views)

Last edited by Lucifeanix; June 30, 2022 at 03:47. Reason: TO add new files and extra information
Lucifeanix is offline   Reply With Quote

Old   July 5, 2022, 11:59
Default Try Filter
  #2
Member
 
Ramesh K
Join Date: Dec 2009
Location: Bangalore
Posts: 73
Rep Power: 16
RameshK is on a distinguished road
Send a message via Yahoo to RameshK
Try to use Cell to point data filter before analysing the results. This might help you.
RameshK is offline   Reply With Quote

Reply

Tags
cfd, su2, validation, verification
Thread Tools Search this Thread
Search this Thread:

Advanced Search
Display Modes

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is Off
Trackbacks are Off
Pingbacks are On
Refbacks are On


Similar Threads
Thread Thread Starter Forum Replies Last Post
[solids4Foam] Problems while validating Turek and Hron (2006) FSI2 and FSI3 problems in solids4Foam subhasisa.rath OpenFOAM CC Toolkits for Fluid-Structure Interaction 0 September 6, 2021 18:02
[solids4Foam] Problems while validating Turek and Hron (2006) FSI2 and FSI3 problems in solids4Foam subhasisa.rath OpenFOAM CC Toolkits for Fluid-Structure Interaction 0 September 6, 2021 17:37
[ICEM] Problems with coedge curves and surfaces tommymoose ANSYS Meshing & Geometry 6 December 1, 2020 12:12
problems with the stability of results ingeniero_82 CFX 3 March 18, 2011 07:19
Results comparison problems ken87 FloEFD, FloWorks & FloTHERM 0 March 15, 2011 04:58


All times are GMT -4. The time now is 15:30.