|
[Sponsors] |
November 27, 2012, 09:08 |
forced to sticking of soot particle
|
#1 |
Senior Member
Govindaraju
Join Date: Apr 2010
Posts: 209
Rep Power: 17 |
Dear friends
I am trying to simulate a mixture of gas and soot particles . My idea is to trap the soot particle by suitable design of the chamber. Please find the CCL and attached geometry . I could not find any particle movement and no sticking effect in cfx post . Kindly rectify my mistake Your kind help is highly appreciated Thank you kmgraju LIBRARY: MATERIAL: Air Ideal Gas Material Description = Air Ideal Gas (constant Cp) Material Group = Air Data, Calorically Perfect Ideal Gases Option = Pure Substance Thermodynamic State = Gas PROPERTIES: Option = General Material EQUATION OF STATE: Molar Mass = 28.96 [kg kmol^-1] Option = Ideal Gas END SPECIFIC HEAT CAPACITY: Option = Value Specific Heat Capacity = 1.0044E+03 [J kg^-1 K^-1] Specific Heat Type = Constant Pressure END REFERENCE STATE: Option = Specified Point Reference Pressure = 1 [atm] Reference Specific Enthalpy = 0. [J/kg] Reference Specific Entropy = 0. [J/kg/K] Reference Temperature = 25 [C] END DYNAMIC VISCOSITY: Dynamic Viscosity = 1.831E-05 [kg m^-1 s^-1] Option = Value END THERMAL CONDUCTIVITY: Option = Value Thermal Conductivity = 2.61E-2 [W m^-1 K^-1] END ABSORPTION COEFFICIENT: Absorption Coefficient = 0.01 [m^-1] Option = Value END SCATTERING COEFFICIENT: Option = Value Scattering Coefficient = 0.0 [m^-1] END REFRACTIVE INDEX: Option = Value Refractive Index = 1.0 [m m^-1] END END END MATERIAL: Soot Material Group = Soot Option = Pure Substance Thermodynamic State = Solid PROPERTIES: Option = General Material EQUATION OF STATE: Density = 2000 [kg m^-3] Molar Mass = 12 [kg kmol^-1] Option = Value END REFERENCE STATE: Option = Automatic END ABSORPTION COEFFICIENT: Absorption Coefficient = 0 [m^-1] Option = Value END END END END FLOW: Flow Analysis 1 SOLUTION UNITS: Angle Units = [rad] Length Units = [m] Mass Units = [kg] Solid Angle Units = [sr] Temperature Units = [K] Time Units = [s] END ANALYSIS TYPE: Option = Steady State EXTERNAL SOLVER COUPLING: Option = None END END DOMAIN: Default Domain Coord Frame = Coord 0 Domain Type = Fluid Location = B40 BOUNDARY: Boundary 1 Boundary Type = INLET Location = F54.40 BOUNDARY CONDITIONS: FLOW REGIME: Option = Subsonic END MASS AND MOMENTUM: Normal Speed = 10 [m s^-1] Option = Normal Speed END TURBULENCE: Option = Medium Intensity and Eddy Viscosity Ratio END END FLUID: soot BOUNDARY CONDITIONS: MASS AND MOMENTUM: Normal Speed = 10 [m s^-1] Option = Normal Speed END PARTICLE MASS FLOW RATE: Mass Flow Rate = 0.8 [kg s^-1] END PARTICLE POSITION: Option = Uniform Injection NUMBER OF POSITIONS: Number = 2000 Option = Direct Specification END END END END END BOUNDARY: out Boundary Type = OUTLET Location = F48.40 BOUNDARY CONDITIONS: FLOW REGIME: Option = Subsonic END MASS AND MOMENTUM: Option = Average Static Pressure Pressure Profile Blend = 0.05 Relative Pressure = 0 [Pa] END PRESSURE AVERAGING: Option = Average Over Whole Outlet END END END BOUNDARY: wall Boundary Type = WALL Location = \ F41.40,F42.40,F43.40,F44.40,F45.40,F46.40,F47.40,F 49.40,F50.40,F51.40\ ,F52.40,F53.40 BOUNDARY CONDITIONS: MASS AND MOMENTUM: Option = No Slip Wall END WALL ROUGHNESS: Option = Rough Wall Sand Grain Roughness Height = 0.2 [mm] END END FLUID: soot BOUNDARY CONDITIONS: PARTICLE WALL INTERACTION: Option = Equation Dependent END VELOCITY: Option = Restitution Coefficient Parallel Coefficient of Restitution = 1.0 Perpendicular Coefficient of Restitution = 0.3131 END END END END DOMAIN MODELS: BUOYANCY MODEL: Option = Non Buoyant END DOMAIN MOTION: Option = Stationary END MESH DEFORMATION: Option = None END REFERENCE PRESSURE: Reference Pressure = 1 [atm] END END FLUID DEFINITION: Air Material = Air Ideal Gas Option = Material Library MORPHOLOGY: Option = Continuous Fluid END END FLUID DEFINITION: soot Material = Soot Option = Material Library MORPHOLOGY: Option = Dispersed Particle Transport Solid PARTICLE DIAMETER CHANGE: Option = Mass Equivalent END PARTICLE DIAMETER DISTRIBUTION: Diameter = 1e-10 [m] Option = Specified Diameter END PARTICLE SHAPE FACTORS: Cross Sectional Area Factor = 1.0 END END END FLUID MODELS: COMBUSTION MODEL: Option = None END FLUID: soot EROSION MODEL: Option = None END PARTICLE ROUGH WALL MODEL: Option = None END END HEAT TRANSFER MODEL: Fluid Temperature = 300 [C] Option = Isothermal END THERMAL RADIATION MODEL: Option = None END TURBULENCE MODEL: Option = k epsilon END TURBULENT WALL FUNCTIONS: Option = Scalable END END FLUID PAIR: Air | soot Particle Coupling = One-way Coupling MOMENTUM TRANSFER: DRAG FORCE: Option = Schiller Naumann END PRESSURE GRADIENT FORCE: Option = None END TURBULENT DISPERSION FORCE: Option = None END VIRTUAL MASS FORCE: Option = None END END END END INITIALISATION: Option = Automatic INITIAL CONDITIONS: Velocity Type = Cartesian CARTESIAN VELOCITY COMPONENTS: Option = Automatic END STATIC PRESSURE: Option = Automatic END TURBULENCE INITIAL CONDITIONS: Option = Medium Intensity and Eddy Viscosity Ratio END END END OUTPUT CONTROL: RESULTS: File Compression Level = Default Option = Standard END END SOLVER CONTROL: Turbulence Numerics = First Order ADVECTION SCHEME: Option = High Resolution END CONVERGENCE CONTROL: Length Scale Option = Conservative Maximum Number of Iterations = 100 Minimum Number of Iterations = 1 Timescale Control = Auto Timescale Timescale Factor = 1.0 END CONVERGENCE CRITERIA: Residual Target = 1.E-4 Residual Type = RMS END DYNAMIC MODEL CONTROL: Global Dynamic Model Control = On END PARTICLE CONTROL: PARTICLE INTEGRATION: Option = Forward Euler END END END END COMMAND FILE: Version = 14.0 Results Version = 14.0 END SIMULATION CONTROL: EXECUTION CONTROL: EXECUTABLE SELECTION: Double Precision = Off END INTERPOLATOR STEP CONTROL: Runtime Priority = Standard MEMORY CONTROL: Memory Allocation Factor = 1.0 END END PARALLEL HOST LIBRARY: HOST DEFINITION: mechfran Host Architecture String = winnt-amd64 Installation Root = C:\Program Files\ANSYS Inc\v%v\CFX END END PARTITIONER STEP CONTROL: Multidomain Option = Independent Partitioning Runtime Priority = Standard EXECUTABLE SELECTION: Use Large Problem Partitioner = Off END MEMORY CONTROL: Memory Allocation Factor = 1.0 END PARTITIONING TYPE: MeTiS Type = k-way Option = MeTiS Partition Size Rule = Automatic END END RUN DEFINITION: Run Mode = Full Solver Input File = Fluid Flow CFX_001.res END SOLVER STEP CONTROL: Runtime Priority = Standard MEMORY CONTROL: Memory Allocation Factor = 1.0 END PARALLEL ENVIRONMENT: Number of Processes = 1 Start Method = Serial END END END END |
|
Thread Tools | Search this Thread |
Display Modes | |
|
|
Similar Threads | ||||
Thread | Thread Starter | Forum | Replies | Last Post |
dispersion model with lagragian particle tracking model for incompressible flows | eelcovv | OpenFOAM Running, Solving & CFD | 54 | April 10, 2018 09:36 |
Blood Damage Modelling via Particle Tracking in a Centrifugal Heart Pump | scatman | CFX | 7 | January 8, 2018 00:59 |
Particle sticking at the wall | thomas | FLUENT | 3 | May 10, 2013 17:32 |
Simulating soot sticking to a wall in a boiler flue. | Zmur | CFX | 9 | August 9, 2012 07:25 |
DPM UDF particle position using the macro P_POS(p)[i] | dm2747 | FLUENT | 0 | April 17, 2009 01:29 |