|
[Sponsors] |
Monte Carlo Simulation: H-Energy is not convergating & high Incident Radiation |
|
LinkBack | Thread Tools | Search this Thread | Display Modes |
March 31, 2016, 02:44 |
Monte Carlo Simulation: H-Energy is not convergating & high Incident Radiation
|
#1 |
New Member
Join Date: Apr 2015
Posts: 10
Rep Power: 11 |
Hey folks,
I am simulating a simple laminar flow in a rectangular channel, with typical inlet and outlet. The walls on the bottom, backside and front have normal no slip BCs. The top of the channel is open, what i modeled as a wall with slip free BC (should be good enough for the beginning). In the channel is participating fluid flow, and at the front wall is my radiation source with a directional radiation flux (which are lamps in the real experiment). The fluid is modeled as multiband spectral model, to have a better view on the results. Therefor i defined the following 4 wavelength-bands:
When I run the case, the H-Energy residuals are not convergating (stay above 10^-4) and when i look in my results i have very very high incident radiation in my MIR band, from about ~3000 W/mē and also looks very strange (more like a test picture, than a good resolution for a directional radiation). But the function of my radiation source should be nearly 0 in that area. I am not too advanced with Ansys yet, so I would be glad if you guys can help me a bit with that problem. I already tried out alot, changed some BCs etc. If its possible I could also change the radiation model, but as far as I know Monte Carlo is the only model whre I can use multiband option and directional radiaton. Kind regards volleyHC Incident radiation of the MIR band: The Log-File: Code:
+--------------------------------------------------------------------+ | | | CFX Command Language for Run | | | +--------------------------------------------------------------------+ LIBRARY: CEL: EXPRESSIONS: Expression 1 = lampe(Wavelength in Vacuum ) Expression 2 = absorption(Wavelength in Vacuum ) END FUNCTION: absorption Argument Units = micron Option = Interpolation Result Units = m^-1 INTERPOLATION DATA: Data Pairs = ...... Extend Max = No Extend Min = No Option = One Dimensional END END FUNCTION: lampe Argument Units = micron Option = Interpolation Result Units = W m^-2 INTERPOLATION DATA: Data Pairs = ..... Extend Max = No Extend Min = No Option = One Dimensional END END END MATERIAL: AgNano3eMinus6 Material Group = Water Data Option = Pure Substance Thermodynamic State = Liquid PROPERTIES: Option = General Material EQUATION OF STATE: Density = 998 [kg m^-3] Molar Mass = 18 [kg kmol^-1] Option = Value END SPECIFIC HEAT CAPACITY: Option = Value Specific Heat Capacity = 4180 [J kg^-1 K^-1] Specific Heat Type = Constant Pressure END DYNAMIC VISCOSITY: Dynamic Viscosity = 1e-3 [Pa s] Option = Value END THERMAL CONDUCTIVITY: Option = Value Thermal Conductivity = 0.6 [W m^-1 K^-1] END ABSORPTION COEFFICIENT: Absorption Coefficient = absorption(Wavelength in Vacuum ) Option = Value END REFRACTIVE INDEX: Option = Value Refractive Index = 1.33 END THERMAL EXPANSIVITY: Option = Value Thermal Expansivity = 1 [K^-1] END END END END FLOW: Flow Analysis 1 SOLUTION UNITS: Angle Units = [rad] Length Units = [m] Mass Units = [kg] Solid Angle Units = [sr] Temperature Units = [K] Time Units = [s] END ANALYSIS TYPE: Option = Steady State EXTERNAL SOLVER COUPLING: Option = None END END DOMAIN: Default Domain Coord Frame = Coord 0 Domain Type = Fluid Location = B16 BOUNDARY: Inlet Boundary Type = INLET Location = F20.16 BOUNDARY CONDITIONS: FLOW REGIME: Option = Subsonic END HEAT TRANSFER: Option = Static Temperature Static Temperature = 20 [C] END MASS AND MOMENTUM: Normal Speed = 0.01 [m s^-1] Option = Normal Speed END THERMAL RADIATION: Option = Local Temperature END END END BOUNDARY: Outlet Boundary Type = OUTLET Location = F17.16 BOUNDARY CONDITIONS: FLOW REGIME: Option = Subsonic END MASS AND MOMENTUM: Option = Static Pressure Relative Pressure = 0 [Pa] END THERMAL RADIATION: Option = Local Temperature END END END BOUNDARY: hinten Boundary Type = WALL Location = F22.16 BOUNDARY CONDITIONS: HEAT TRANSFER: Option = Adiabatic END MASS AND MOMENTUM: Option = No Slip Wall END THERMAL RADIATION: Diffuse Fraction = 0 Emissivity = 0 Option = Opaque END END END BOUNDARY: oben Boundary Type = WALL Location = F19.16 BOUNDARY CONDITIONS: HEAT TRANSFER: Heat Transfer Coefficient = 7 [W m^-2 K^-1] Option = Heat Transfer Coefficient Outside Temperature = 20 [C] END MASS AND MOMENTUM: Option = Free Slip Wall END THERMAL RADIATION: Diffuse Fraction = 0 Emissivity = 0 Option = Opaque END END END BOUNDARY: unten Boundary Type = WALL Location = F21.16 BOUNDARY CONDITIONS: HEAT TRANSFER: Option = Adiabatic END MASS AND MOMENTUM: Option = No Slip Wall END THERMAL RADIATION: Diffuse Fraction = 0 Emissivity = 0 Option = Opaque END END END BOUNDARY: vorne Boundary Type = WALL Location = F18.16 BOUNDARY CONDITIONS: HEAT TRANSFER: Option = Adiabatic END MASS AND MOMENTUM: Option = No Slip Wall END THERMAL RADIATION: Diffuse Fraction = 0 Emissivity = 1. Option = Opaque END END BOUNDARY SOURCE: SOURCES: RADIATION SOURCE: Radiation Source 1 External Refractive Index = 1.0 Option = Directional Radiation Flux Radiation Flux = lampe(Wavelength in Vacuum ) DIRECTION: Option = Cartesian Components Unit Vector X Component = 0 Unit Vector Y Component = 0 Unit Vector Z Component = 0.2 END END END END END DOMAIN MODELS: BUOYANCY MODEL: Option = Non Buoyant END DOMAIN MOTION: Option = Stationary END MESH DEFORMATION: Option = None END REFERENCE PRESSURE: Reference Pressure = 1 [bar] END END FLUID DEFINITION: Fluid 1 Material = AgNano3eMinus6 Option = Material Library MORPHOLOGY: Option = Continuous Fluid END END FLUID MODELS: COMBUSTION MODEL: Option = None END HEAT TRANSFER MODEL: Include Viscous Dissipation Term = On Option = Thermal Energy END THERMAL RADIATION MODEL: Number of Histories = 2000000 Option = Monte Carlo Radiation Transfer Mode = Participating Media SCATTERING MODEL: Option = None END SPECTRAL MODEL: Option = Multiband SPECTRAL BAND: MIR Option = Wavelength in Vacuum Wavelength Lower Limit = 1.6 [micron] Wavelength Upper Limit = 1000. [micron] END SPECTRAL BAND: NIR Option = Wavelength in Vacuum Wavelength Lower Limit = 0.8 [micron] Wavelength Upper Limit = 1.6 [micron] END SPECTRAL BAND: UV Option = Wavelength in Vacuum Wavelength Lower Limit = 0. [micron] Wavelength Upper Limit = 0.3 [micron] END SPECTRAL BAND: Vis Option = Wavelength in Vacuum Wavelength Lower Limit = 0.3 [micron] Wavelength Upper Limit = 0.8 [micron] END END END TURBULENCE MODEL: Option = Laminar END END END INITIALISATION: Option = Automatic INITIAL CONDITIONS: Velocity Type = Cartesian CARTESIAN VELOCITY COMPONENTS: Option = Automatic with Value U = 0.01 [m s^-1] V = 0 [m s^-1] W = 0 [m s^-1] END RADIATION INTENSITY: Option = Automatic with Value Radiation Intensity = 0 [W m^-2 sr^-1] END STATIC PRESSURE: Option = Automatic with Value Relative Pressure = 0 [Pa] END TEMPERATURE: Option = Automatic with Value Temperature = 20 [C] END END END OUTPUT CONTROL: MONITOR OBJECTS: MONITOR BALANCES: Option = Full END MONITOR FORCES: Option = Full END MONITOR PARTICLES: Option = Full END MONITOR RESIDUALS: Option = Full END MONITOR TOTALS: Option = Full END END RESULTS: File Compression Level = Default Option = Standard END END SOLVER CONTROL: ADVECTION SCHEME: Option = High Resolution END CONVERGENCE CONTROL: Length Scale Option = Conservative Maximum Number of Iterations = 10000 Minimum Number of Iterations = 1 Timescale Control = Auto Timescale Timescale Factor = 1.0 END CONVERGENCE CRITERIA: Residual Target = 1e-06 Residual Type = RMS END DYNAMIC MODEL CONTROL: Global Dynamic Model Control = On END EQUATION CLASS: continuity CONVERGENCE CONTROL: Length Scale Option = Conservative Timescale Control = Auto Timescale Timescale Factor = 1.0 END CONVERGENCE CRITERIA: Residual Target = 0.000001 Residual Type = RMS END END EQUATION CLASS: energy CONVERGENCE CONTROL: Length Scale Option = Conservative Timescale Control = Auto Timescale Timescale Factor = 1.0 END CONVERGENCE CRITERIA: Residual Target = 1e-08 Residual Type = RMS END END EQUATION CLASS: momentum CONVERGENCE CONTROL: Length Scale Option = Conservative Timescale Control = Auto Timescale Timescale Factor = 1.0 END CONVERGENCE CRITERIA: Residual Target = 0.000001 Residual Type = RMS END END END END COMMAND FILE: Version = 16.2 Results Version = 16.2 END SIMULATION CONTROL: EXECUTION CONTROL: EXECUTABLE SELECTION: Double Precision = No END INTERPOLATOR STEP CONTROL: Runtime Priority = Standard MEMORY CONTROL: Memory Allocation Factor = 1.0 END END PARALLEL HOST LIBRARY: HOST DEFINITION: keelah Host Architecture String = winnt-amd64 Installation Root = C:\Program Files\ANSYS Inc\v%v\CFX END END PARTITIONER STEP CONTROL: Multidomain Option = Automatic Runtime Priority = Idle EXECUTABLE SELECTION: Use Large Problem Partitioner = Off END MEMORY CONTROL: Memory Allocation Factor = 1.0 END PARTITION SMOOTHING: Maximum Partition Smoothing Sweeps = 100 Option = Smooth END PARTITIONING TYPE: MeTiS Type = k-way Option = MeTiS Partition Size Rule = Automatic Partition Weight Factors = 0.25000, 0.25000, 0.25000, 0.25000 END END RUN DEFINITION: Run Mode = Full Solver Input File = Fluid Flow CFX.def Solver Results File = \ E:/Ansys_Work/Kanal/Kanal002_pending/dp0_CFX_2_Solution_2/Fluid Flow \ CFX_007.res END SOLVER STEP CONTROL: Runtime Priority = Standard MEMORY CONTROL: Memory Allocation Factor = 1.0 END PARALLEL ENVIRONMENT: Number of Processes = 4 Start Method = Platform MPI Local Parallel Parallel Host List = keelah*4 END END END END Last edited by volleyHC; March 31, 2016 at 13:22. |
|
March 31, 2016, 08:12 |
|
#2 |
Super Moderator
Glenn Horrocks
Join Date: Mar 2009
Location: Sydney, Australia
Posts: 17,830
Rep Power: 144 |
Nice post - thanks for giving a clear description and including plenty of information.
When I look at your image it looks like the radiation model has not got enough rays to accurately model the distribution. This will also mean the heat equation has a hard time converging as radiation heat load is all over the place. Have a look at the options for your radiation model and try to add more ray tracing, run the rays longer. I can't give you the exact options to choose as I am writing this from home, but have a look at the options available under the radiation model. |
|
March 31, 2016, 09:01 |
|
#3 |
New Member
Join Date: Apr 2015
Posts: 10
Rep Power: 11 |
Thanks for your answer so far. I just tried to be as specific as I could, hoping everything will be clear!
I already tried some different Number of Histories in the Monte Carlo Options (from 100,000 - 10,000,000) but that didn`t change much (except the calculation time). And it also seems that the results don't change alot, whatever i stop the calculation after ~200 timesteps or 1000. But I will go on, checking my options But I really wonder why the incident radiation is that high in the MIR band. Here is the part of the absorption function concerning the MIR band Code:
1,6 773,9786997 1,605 750,2439988 1,61 729,9210398 1,615 711,3216078 1,62 692,6510766 1,625 676,3675608 1,63 662,0896591 1,635 646,869667 1,64 634,6799583 1,645 626,3101641 1,65 616,7981808 1,655 606,534028 1,66 600,0665601 1,665 594,2078175 1,67 589,7065679 1,675 585,9433858 1,68 583,9024661 1,685 583,9639049 1,69 583,8570969 1,695 585,4270252 1,7 588,8064375 1,705 591,6195953 1,71 597,8752422 1,715 607,2002148 1,72 618,2670663 1,725 630,4562065 1,73 644,3750966 1,735 661,7625939 1,74 682,5698288 1,745 707,8633257 1,75 735,6606947 1,755 762,855249 1,76 789,479667 1,765 826,0583917 1,77 856,1847686 1,775 879,7320573 1,78 899,0005169 1,785 913,2439043 1,79 917,7492674 1,795 917,4891609 1,8 917,9468421 1,805 926,1134879 1,81 918,5335166 1,815 917,8638647 1,82 920,5711555 1,825 923,6714283 1,83 936,5191798 1,835 956,451588 1,84 981,0064806 1,845 1008,394198 1,85 1084,421466 1,855 1188,549602 1,86 1333,716797 1,865 1546,717113 1,87 1931,953968 1,875 2490,826052 1,88 3247,652051 1,885 4440,884627 1,89 5966,428144 1,895 7689,90509 1,9 9460,925033 1,905 10851,14228 1,91 11970,94846 1,915 12748,71328 1,92 13208,79632 1,925 13514,99957 1,93 13655,95968 1,935 13560,29226 1,94 13369,88118 1,945 13077,07546 1,95 12636,19604 1,955 12151,3602 1,96 11620,77014 1,965 11092,88045 1,97 10569,58232 1,975 10053,38343 1,98 9539,791795 1,985 9037,109421 1,99 8574,768055 1,995 8141,654389 2 7728,601648 2,1 0 5 0 10 0 100 0 1000 0 As you can see, the source in this area is minimal to nearly 0! Code:
1.60898 15.41 1.64583 0.00 1.83739 0.00 1.94769 0.00 2.08192 0.00 2.23201 0.00 2.49504 0.00 2.69219 0.00 5 0.0 10 0.0 100 0.0 1000 0.00 |
|
March 31, 2016, 10:10 |
|
#4 |
Senior Member
Join Date: Jun 2009
Posts: 1,862
Rep Power: 33 |
As Glenn mentioned, thank you for the detailed explanation and useful information.
Your plot is on a wall for the Incident Radiation. At walls you are better served by looking at the Wall Irradiation Flux instead since it is the amount of radiative energy arriving from everywhere else. In addition, you should look at the diagnostic variables for Monte Carlo suffixed by Normalized Standard Deviation (or similar). Those variables will give you a statistical measure of how good the radiative calculation is. The H-Energy equation does not converge as usual when using the Monte Carlo model since every iteration, the radiative calculation is brand new and not frozen. If you increase the Number of Histories, the H-Energy residual will settle at a lower value; however, it will not converge monotonically as it is the case when using P1, or Discrete Transfer. Hope the above helps, |
|
March 31, 2016, 13:16 |
|
#5 |
New Member
Join Date: Apr 2015
Posts: 10
Rep Power: 11 |
Thanks for you answer. I will have a look and give some feedback later.
Well, actually the plat isnt on the wall, it's on a plane parallel to the wall. But i understand, that it looks like its on the wall. The distance is nearly 0, so maybe not the best example, sorry. |
|
April 3, 2016, 05:41 |
|
#6 |
New Member
Join Date: Apr 2015
Posts: 10
Rep Power: 11 |
Hey again,
I've done some more simulations with Number of Histories 1,000,000, and this is what i got: XY- and XZ-Plane show the Normalized Standard Deviation of the Radiation Intensity and here is the end of the .out-File Code:
====================================================================== OUTER LOOP ITERATION = 1970 ( 1142) CPU SECONDS = 1.487E+05 (8.775E+04) ---------------------------------------------------------------------- | Equation | Rate | RMS Res | Max Res | Linear Solution | +----------------------+------+---------+---------+------------------+ | U-Mom | 1.00 | 7.1E-17 | 1.0E-15 | 7.8E-03 OK| | V-Mom | 1.00 | 1.0E-16 | 1.4E-15 | 8.6E-03 OK| | W-Mom | 1.00 | 1.1E-16 | 1.0E-15 | 8.3E-03 OK| | P-Mass | 0.96 | 3.3E-17 | 3.2E-16 | 5.0 5.9E-03 OK| +----------------------+------+---------+---------+------------------+ | I-Radiation | | %SD Vol | %SD Sur | %Lost %Imbal | | Full Spectrum | | 1.8E+00 | 5.3E+00 | 0.00 0.01 | +----------------------+------+---------+---------+------------------+ | H-Energy | 0.87 | 1.4E-03 | 4.3E-02 | 5.7 3.0E-04 OK| +----------------------+------+---------+---------+------------------+ Execution terminating: STP file found. CFD Solver finished: Fri Apr 01 13:44:25 2016 CFD Solver wall clock seconds: 2.1953E+04 ====================================================================== Termination and Interrupt Condition Summary ====================================================================== CFD Solver: Stop instruction received ====================================================================== Boundary Flow and Total Source Term Summary ====================================================================== +--------------------------------------------------------------------+ | U-Mom | +--------------------------------------------------------------------+ Boundary : Inlet 3.2097E-04 Boundary : Outlet -1.2017E-04 Boundary : hinten -2.5288E-05 Boundary : oben -1.6116E-26 Boundary : unten -1.5023E-04 Boundary : vorne -2.5288E-05 ----------- Domain Imbalance : 8.4703E-20 +--------------------------------------------------------------------+ | V-Mom | +--------------------------------------------------------------------+ Boundary : Inlet -3.5089E-07 Boundary : Outlet 9.5095E-07 Boundary : hinten -8.7743E-08 Boundary : oben -6.2346E-03 Boundary : unten 6.2342E-03 Boundary : vorne -8.7743E-08 ----------- Domain Imbalance : 7.2405E-18 +--------------------------------------------------------------------+ | W-Mom | +--------------------------------------------------------------------+ Boundary : Inlet -4.9896E-21 Boundary : Outlet 2.4352E-21 Boundary : hinten -1.3428E-03 Boundary : oben 7.1688E-25 Boundary : unten -6.3569E-22 Boundary : vorne 1.3428E-03 ----------- Domain Imbalance : -1.5179E-18 +--------------------------------------------------------------------+ | P-Mass | +--------------------------------------------------------------------+ Boundary : Inlet 9.0818E-03 Boundary : Outlet -9.0818E-03 ----------- Domain Imbalance : 6.5919E-17 +--------------------------------------------------------------------+ | I-Radiation | +--------------------------------------------------------------------+ Boundary : Inlet -1.8641E-03 Boundary : Outlet 2.0099E-03 Boundary : oben -5.5201E-15 Boundary : unten -5.5240E-15 Boundary : vorne 6.9653E-01 Domain Src (Neg) : Default Domain -6.9668E-01 ----------- Global Imbalance : -1.4655E-14 +--------------------------------------------------------------------+ | H-Energy | +--------------------------------------------------------------------+ Boundary : Inlet -1.8981E+02 Boundary : Outlet 1.8908E+02 Boundary : oben -5.0950E-03 Boundary : unten 5.5279E-15 Boundary : vorne 4.1513E-02 Domain Src (Pos) : Default Domain 6.9668E-01 ----------- Domain Imbalance : -1.7041E-03 +--------------------------------------------------------------------+ | Normalised Imbalance Summary | +--------------------------------------------------------------------+ | Equation | Maximum Flow | Imbalance (%) | +--------------------------------------------------------------------+ | U-Mom | 6.2346E-03 | 0.0000 | | V-Mom | 6.2346E-03 | 0.0000 | | W-Mom | 6.2346E-03 | -0.0000 | | P-Mass | 9.0818E-03 | 0.0000 | +----------------------+-----------------------+---------------------+ | I-Radiation | 6.9668E-01 | -0.0000 | +----------------------+-----------------------+---------------------+ | H-Energy | 1.8981E+02 | -0.0009 | +----------------------+-----------------------+---------------------+ ====================================================================== Wall Force and Moment Summary ====================================================================== Notes: 1. Pressure integrals exclude the reference pressure. To include it, set the expert parameter 'include pref in forces = t'. +--------------------------------------------------------------------+ | Pressure Force On Walls | +--------------------------------------------------------------------+ X-Comp. Y-Comp. Z-Comp. Domain Group: Default Domain hinten 0.0000E+00 0.0000E+00 1.3430E-03 oben 0.0000E+00 6.2340E-03 0.0000E+00 unten 0.0000E+00 -6.2350E-03 0.0000E+00 vorne 0.0000E+00 0.0000E+00 -1.3430E-03 ----------- ----------- ----------- Domain Group Totals : 0.0000E+00 -1.0408E-06 2.1684E-18 +--------------------------------------------------------------------+ | Viscous Force On Walls | +--------------------------------------------------------------------+ X-Comp. Y-Comp. Z-Comp. Domain Group: Default Domain hinten 2.5288E-05 8.7743E-08 -1.9652E-07 oben 1.6116E-26 5.9946E-07 -7.1688E-25 unten 1.5023E-04 8.6587E-07 1.0154E-21 vorne 2.5288E-05 8.7743E-08 1.9652E-07 ----------- ----------- ----------- Domain Group Totals : 2.0080E-04 1.6408E-06 -2.1176E-22 +--------------------------------------------------------------------+ | Pressure Moment On Walls | +--------------------------------------------------------------------+ X-Comp. Y-Comp. Z-Comp. Domain Group: Default Domain hinten 9.4004E-06 -3.9800E-04 0.0000E+00 oben -2.0260E-04 0.0000E+00 1.8482E-03 unten 2.0264E-04 0.0000E+00 -1.8481E-03 vorne -9.4004E-06 3.9800E-04 0.0000E+00 ----------- ----------- ----------- Domain Group Totals : 3.3824E-08 -3.7947E-19 9.5518E-08 +--------------------------------------------------------------------+ | Viscous Moment On Walls | +--------------------------------------------------------------------+ X-Comp. Y-Comp. Z-Comp. Domain Group: Default Domain hinten -7.1440E-09 1.6483E-06 -2.0331E-07 oben -1.9482E-08 7.6611E-26 6.7092E-08 unten -2.8141E-08 4.8824E-06 1.7605E-08 vorne 1.4407E-09 -4.6304E-09 -2.0331E-07 ----------- ----------- ----------- Domain Group Totals : -5.3326E-08 6.5261E-06 -3.2193E-07 +--------------------------------------------------------------------+ | Locations of Maximum Residuals | +--------------------------------------------------------------------+ | Equation | Domain Name | Node Number | +--------------------------------------------------------------------+ | U-Mom | Default Domain | 75456 | | V-Mom | Default Domain | 90592 | | W-Mom | Default Domain | 90192 | | P-Mass | Default Domain | 77469 | +----------------------+-----------------------+---------------------+ | H-Energy | Default Domain | 84807 | +----------------------+-----------------------+---------------------+ ====================================================================== | False Transient Information | +--------------------------------------------------------------------+ | Equation | Type | Elapsed Pseudo-Time | +--------------------------------------------------------------------+ | U-Mom | Auto Timescale | 5.57011E+03 | | V-Mom | Auto Timescale | 5.57011E+03 | | W-Mom | Auto Timescale | 5.57011E+03 | +----------------------+-----------------------+---------------------+ | H-Energy | Auto Timescale | 5.44570E+03 | +----------------------+-----------------------+---------------------+ +--------------------------------------------------------------------+ | Average Scale Information | +--------------------------------------------------------------------+ Domain Name : Default Domain Global Length = 9.4249E-02 Minimum Extent = 1.4000E-02 Maximum Extent = 9.2000E-01 Density = 9.9800E+02 Dynamic Viscosity = 1.0000E-03 Velocity = 1.1173E-02 Advection Time = 8.4354E+00 Reynolds Number = 1.0509E+03 Thermal Conductivity = 6.0000E-01 Specific Heat Capacity at Constant Pressure = 4.1800E+03 Prandtl Number = 6.9667E+00 Temperature Range = 2.6492E-01 Total Extinction Coefficient = 3.5109E-09 Optical Thickness = 3.3090E-10 +--------------------------------------------------------------------+ | ****** Notice ****** | | Spectral band contribution to the spectrum is negligible | | Domain : Default Domain | | Spectral Band: Vis | | Contribution : 0.60135-153 | +--------------------------------------------------------------------+ +--------------------------------------------------------------------+ | ****** Notice ****** | | Spectral band contribution to the spectrum is negligible | | Domain : Default Domain | | Spectral Band: UV | | Contribution : 0.60135-153 | +--------------------------------------------------------------------+ +--------------------------------------------------------------------+ | ****** Notice ****** | | Spectral band contribution to the spectrum is negligible | | Domain : Default Domain | | Spectral Band: NIR | | Contribution : 0.60135-153 | +--------------------------------------------------------------------+ +--------------------------------------------------------------------+ | Variable Range Information | +--------------------------------------------------------------------+ Domain Name : Default Domain +--------------------------------------------------------------------+ | Variable Name | min | max | +--------------------------------------------------------------------+ | Density | 9.98E+02 | 9.98E+02 | | Specific Heat Capacity at Constant Pressure| 4.18E+03 | 4.18E+03 | | Dynamic Viscosity | 1.00E-03 | 1.00E-03 | | Thermal Conductivity | 6.00E-01 | 6.00E-01 | | Static Entropy | -7.07E+01 | -6.69E+01 | | Total Absorption Coefficient | 3.50E-09 | 3.59E-09 | | Total Scattering Coefficient | 0.00E+00 | 0.00E+00 | | Radiation Intensity | 2.32E+02 | 2.43E+02 | | Vis.Radiation Intensity | 0.00E+00 | 1.33E+00 | | UV.Radiation Intensity | 0.00E+00 | 0.00E+00 | | NIR.Radiation Intensity | 1.23E+00 | 2.31E+00 | | MIR.Radiation Intensity | 2.30E+02 | 2.41E+02 | | Velocity u | 5.31E-05 | 1.89E-02 | | Velocity v | -3.47E-05 | 7.25E-04 | | Velocity w | -7.54E-04 | 7.54E-04 | | Pressure | -4.79E-07 | 2.72E-01 | | Temperature | 2.93E+02 | 2.93E+02 | | Static Enthalpy | -2.09E+04 | -1.98E+04 | +--------------------------------------------------------------------+ +--------------------------------------------------------------------+ | CPU Requirements of Numerical Solution - Total | +--------------------------------------------------------------------+ Subsystem Name Discretization Linear Solution (secs. %total) (secs. %total) ---------------------------------------------------------------------- Momentum and Mass 1.25E+04 14.2 % 1.18E+03 1.3 % Thermal Radiation 8.42E+02 1.0 % 6.84E+04 77.9 % Heat Transfer 2.97E+03 3.4 % 4.00E+02 0.5 % -------- ------- -------- ------ Subsystem Summary 1.63E+04 18.5 % 7.00E+04 79.7 % Variable Updates 1.42E+03 1.6 % Search Calculations 4.69E-02 0.0 % File Reading 2.04E+00 0.0 % File Writing 4.18E+00 0.0 % Miscellaneous 1.25E+02 0.1 % -------- Total 8.78E+04 +--------------------------------------------------------------------+ | Job Information at End of Run | +--------------------------------------------------------------------+ Job finished: Fri Apr 01 13:44:28 2016 Total wall clock time: 2.196E+04 seconds or: ( 0: 6: 6: 0.684 ) ( Days: Hours: Minutes: Seconds ) ... This run of the ANSYS CFX Solver has finished. Would be very thankful for your help! Last edited by volleyHC; April 3, 2016 at 07:06. |
|
Thread Tools | Search this Thread |
Display Modes | |
|
|
Similar Threads | ||||
Thread | Thread Starter | Forum | Replies | Last Post |
Meshing for Monte Carlo Radiation | Zoran | CFX | 6 | November 30, 2007 10:03 |
Info Radiation Monte Carlo Model | Matteo | CFX | 1 | December 22, 2006 09:01 |
Knudsen / Molecular Flow - Monte Carlo Simulation | Axel Rohde | Main CFD Forum | 1 | July 30, 2004 11:32 |
Fluent incident radiation problem | Michael Schwarz | Main CFD Forum | 0 | October 21, 1999 05:56 |
Why FVM for high-Re flows? | Zhong Lei | Main CFD Forum | 23 | May 14, 1999 13:22 |