CFD Online Logo CFD Online URL
www.cfd-online.com
[Sponsors]
Home > Forums > Software User Forums > ANSYS > FLUENT

Rotation Reference Frame Boundary Conditions

Register Blogs Community New Posts Updated Threads Search

Like Tree1Likes
  • 1 Post By ghost82

 
 
LinkBack Thread Tools Search this Thread Display Modes
Prev Previous Post   Next Post Next
Old   April 11, 2013, 05:46
Default Rotation Reference Frame Boundary Conditions
  #1
New Member
 
B.Rathmann
Join Date: Feb 2013
Location: Germany
Posts: 7
Rep Power: 13
Brathmann is on a distinguished road
Hello everybody.

For a propeller-like geometry in a closed volume I want to model the air flow, namely dynamic pressure, resulting from the rotor movement. Most hints how to do that which I found pointed out to use a rotating reference frame. I did that but end up with results that don't match each other at the contact faces between the moving and the rotating fluid zone. Do you have any idea what the problem might bee?

Here is what I did so far: (If you lack information, I's be happy to provide more. I'm still not so sure, which information is relevant for the problem)
I modeled a cyclic periodic region of the problem, meshed it with Face Sizings and obtained a mesh of about 0.2 othogonal quality and 10 aspect ration. Which isn't super, as far as I got it, but did lead to convergence. After defining the small, disk like fluid zone (s. pic: PeriodicRegion) as rotationally moving frame with rot. velocity of 90 rad and the adjacent rotor-wall as rotationally moving wall with relative velocity of 0m/s i sucessfully made periodic boundaries for the symmetry boundaries in the model and set the contact region between the moving fluidzone and the rest of the flow channel as standard interfaces.
With the standard visous k-e-model, Coupled Scheme as Solution Methods using Second Order Upwind discretizations for Momentum, Turbulent Kinetic Energy and Turbulent Dissipation Rate convergence is quick (worst convergence is Continuity with 0.001) and results seem reasonable.

The problem is, that the calculated values clearly don't match in the contact area of the two fluid zones as you can see in pic. PressureDyn. The spare area in the plane is the airfoil, rotating away from the spectator around the y-axis situated at the origin to the left of the countour plane.

Any hints? I would appreciate a lot.
Have a nice day
Brathmann

ANSYS Version: 14.0 workbench
Attached Images
File Type: jpg PeriodicRegion.JPG (21.7 KB, 138 views)
File Type: png PressureDyn.png (58.6 KB, 133 views)
Brathmann is offline   Reply With Quote

 

Tags
closed volume, moving reference frame, periodic bc


Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is Off
Trackbacks are Off
Pingbacks are On
Refbacks are On


Similar Threads
Thread Thread Starter Forum Replies Last Post
Constant velocity of the material Sas CFX 15 July 13, 2010 08:56
RPM in Wind Turbine Pankaj CFX 9 November 23, 2009 04:05
CFX doesn't continue calculation... mactech001 CFX 6 November 15, 2009 21:25
No results for solid domain Gary Holland CFX 10 March 13, 2009 03:30
OpenFOAM on MinGW crosscompiler hosted on Linux allenzhao OpenFOAM Installation 127 January 30, 2009 19:08


All times are GMT -4. The time now is 12:23.