CFD Online Logo CFD Online URL
www.cfd-online.com
[Sponsors]
Home > Forums > General Forums > Main CFD Forum

Pressure correction for compressible gas

Register Blogs Community New Posts Updated Threads Search

 
 
LinkBack Thread Tools Search this Thread Display Modes
Prev Previous Post   Next Post Next
Old   June 9, 2017, 05:08
Default Pressure correction for compressible gas
  #1
New Member
 
Leonhard Schmalhorst
Join Date: Nov 2015
Location: Munich, Germany
Posts: 1
Rep Power: 0
lstum is on a distinguished road
Hi everyone,

I'm trying to set up a solver in matlab for gas flowing through a fixed bed reactor. The equations i have are the momentum balances in axial and in radial direction and the mass continuity equation. So far, so good...

My proceeding is as follows:
  1. Guess pressure field and velocity field
  2. Calculate axial velocity using the momentum balance in axial direction
  3. Calculate radial velocity using the momentum balance in radial direction
  4. Calcultate density field from continuity equation
  5. Calculate new pressure field using ideal gas law (I assume constant high temperatures, later i will solve the energy equation as well)
  6. Check for convergence
  7. If no convergence, go back to step 2 using the new calculated pressure field or only parts of it (e.g. p_{new} = p_{old} + 0.5 (p_{new} -  p_{old}))

Obviously, the steps 1-3 are the same as in nearly all algorithms. But since my algorithm does not work (oscillating residuals) i am not sure if steps 4 - 7 are correct.
Does anyone has an advice for me? I'm thankful for every answer.
Have a nice weekend,
Cheers, Leo

PS: Here are the equations i'm using:
Momentum balance radial direction:

- \frac{\partial p}{\partial r} - f_1 u - f_2 \sqrt{u^2 + v^2} u + \eta _{eff} (\frac{\partial}{\partial r} (\frac{1}{r} \frac{\partial ru}{\partial r}) + \frac{\partial^2 u}{\partial r^2}) - \rho ( u \frac{\partial u}{\partial r} + v \frac{\partial u}{\partial z} ) = 0

Momentum balance axial direction:

- \frac{\partial p}{\partial z} - f_1 v - f_2 \sqrt{u^2 + v^2} v +  \eta _{eff} (\frac{1}{r} \frac{\partial}{\partial r} (r\frac{\partial v}{\partial r}) + \frac{\partial^2 v}{\partial r^2}) - \rho ( u  \frac{\partial v}{\partial r} + v \frac{\partial v}{\partial z} ) = 0

Continuity equation:

\frac{1}{r} \frac{\partial r\rho u}{\partial r} + \frac{\partial \rho v}{\partial z} = 0

Ideal gas law:
p = \rho \cdot R \cdot T
lstum is offline   Reply With Quote

 

Tags
compressible, fixed bed, gas, pressure correction


Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is Off
Trackbacks are Off
Pingbacks are On
Refbacks are On


Similar Threads
Thread Thread Starter Forum Replies Last Post
Wind tunnel Boundary Conditions in Fluent metmet FLUENT 6 October 30, 2019 12:23
SIMPLE algorithm does not converge when using old pressure (correction) values andreasp Main CFD Forum 3 February 9, 2016 21:18
Gas Diffusion and Pressure Distribution Xuekun Main CFD Forum 0 October 29, 2015 10:10
Using ideal gas law to simulate pressure decline Björn Mattsson FLUENT 5 September 5, 2005 04:03
Hydrostatic pressure in 2-phase flow modeling (long) DS & HB Main CFD Forum 0 January 8, 2000 15:00


All times are GMT -4. The time now is 13:59.