|
[Sponsors] |
[snappyHexMesh] SnappyHexMesh Internal Mesh problem |
|
LinkBack | Thread Tools | Search this Thread | Display Modes |
September 30, 2019, 16:23 |
SnappyHexMesh Internal Mesh problem
|
#1 |
New Member
anonymous
Join Date: Sep 2019
Location: North Carolina
Posts: 25
Rep Power: 7 |
I'm trying to do a basic internal mesh and I'm having issues getting it to create a mesh inside the pipe. For Locationinmesh() I'm selecting a point inside the pipe, well at least I think I am. For my setup it seems like it should be simple but for some reason it will not generate an internal mesh.
I started with the motorbike tutorial and worked from there. Here is my blockMeshDict file Code:
C++ -*----------------------------------*\ ========= | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox \\ / O peration | Website: https://openfoam.org \\ / A nd | Version: 7 \\/ M anipulation | \*---------------------------------------------------------------------------*/ FoamFile { version 2.0; format ascii; class dictionary; object blockMeshDict; } // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // convertToMeters 1; vertices ( (-1 -1 -1) (16 -1 -1) (16 4 -1) (-1 4 -1) (-1 -1 4) (16 -1 4) (16 4 4) (-1 4 4) ); blocks ( hex (0 1 2 3 4 5 6 7) (68 20 20) simpleGrading (1 1 1) ); edges ( ); boundary ( frontAndBack { type patch; faces ( (3 7 6 2) (1 5 4 0) ); } inlet { type patch; faces ( (0 4 7 3) ); } outlet { type patch; faces ( (2 6 5 1) ); } lowerWall { type patch; faces ( (0 3 2 1) ); } upperWall { type patch; faces ( (4 5 6 7) ); } ); // ************************************************************************* // Code:
/*--------------------------------*- C++ -*----------------------------------*\ ========= | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox \\ / O peration | Website: https://openfoam.org \\ / A nd | Version: 7 \\/ M anipulation | \*---------------------------------------------------------------------------*/ FoamFile { version 2.0; format ascii; class dictionary; object snappyHexMeshDict; } // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // // Which of the steps to run castellatedMesh true; snap true; addLayers false; // Geometry. Definition of all surfaces. All surfaces are of class // searchableSurface. // Surfaces are used // - to specify refinement for any mesh cell intersecting it // - to specify refinement for any mesh cell inside/outside/near // - to 'snap' the mesh boundary to the surface geometry { pipe { type triSurfaceMesh; file "pipe.stl"; } //refinementBox //{ // type searchableBox; // min (-1.0 -0.7 0.0); // max ( 8.0 0.7 2.5); //} }; // Settings for the castellatedMesh generation. castellatedMeshControls { // Refinement parameters // ~~~~~~~~~~~~~~~~~~~~~ // If local number of cells is >= maxLocalCells on any processor // switches from from refinement followed by balancing // (current method) to (weighted) balancing before refinement. maxLocalCells 100000; // Overall cell limit (approximately). Refinement will stop immediately // upon reaching this number so a refinement level might not complete. // Note that this is the number of cells before removing the part which // is not 'visible' from the keepPoint. The final number of cells might // actually be a lot less. maxGlobalCells 2000000; // The surface refinement loop might spend lots of iterations refining just a // few cells. This setting will cause refinement to stop if <= minimumRefine // are selected for refinement. Note: it will at least do one iteration // (unless the number of cells to refine is 0) minRefinementCells 0; // Allow a certain level of imbalance during refining // (since balancing is quite expensive) // Expressed as fraction of perfect balance (= overall number of cells / // nProcs). 0=balance always. maxLoadUnbalance 0.10; // Number of buffer layers between different levels. // 1 means normal 2:1 refinement restriction, larger means slower // refinement. nCellsBetweenLevels 1; // Explicit feature edge refinement // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // Specifies a level for any cell intersected by its edges. // This is a featureEdgeMesh, read from constant/triSurface for now. features ( { file "pipe.eMesh"; level 2; } ); // Surface based refinement // ~~~~~~~~~~~~~~~~~~~~~~~~ // Specifies two levels for every surface. The first is the minimum level, // every cell intersecting a surface gets refined up to the minimum level. // The second level is the maximum level. Cells that 'see' multiple // intersections where the intersections make an // angle > resolveFeatureAngle get refined up to the maximum level. refinementSurfaces { pipe { // Surface-wise min and max refinement level level (1 1); // Optional specification of patch type (default is wall). No // constraint types (cyclic, symmetry) etc. are allowed. patchInfo { type patch; //inGroups (motorBikeGroup); } } } // Resolve sharp angles resolveFeatureAngle 30; // Region-wise refinement // ~~~~~~~~~~~~~~~~~~~~~~ // Specifies refinement level for cells in relation to a surface. One of // three modes // - distance. 'levels' specifies per distance to the surface the // wanted refinement level. The distances need to be specified in // descending order. // - inside. 'levels' is only one entry and only the level is used. All // cells inside the surface get refined up to the level. The surface // needs to be closed for this to be possible. // - outside. Same but cells outside. refinementRegions { //refinementBox //{ // mode inside; // levels ((1E15 4)); //} } // Mesh selection // ~~~~~~~~~~~~~~ // After refinement patches get added for all refinementSurfaces and // all cells intersecting the surfaces get put into these patches. The // section reachable from the locationInMesh is kept. // NOTE: This point should never be on a face, always inside a cell, even // after refinement. locationInMesh (7.01 1.41 1.41); // Whether any faceZones (as specified in the refinementSurfaces) // are only on the boundary of corresponding cellZones or also allow // free-standing zone faces. Not used if there are no faceZones. allowFreeStandingZoneFaces true; } // Settings for the snapping. snapControls { //- Number of patch smoothing iterations before finding correspondence // to surface nSmoothPatch 3; //- Relative distance for points to be attracted by surface feature point // or edge. True distance is this factor times local // maximum edge length. tolerance 2.0; //- Number of mesh displacement relaxation iterations. nSolveIter 30; //- Maximum number of snapping relaxation iterations. Should stop // before upon reaching a correct mesh. nRelaxIter 5; // Feature snapping //- Number of feature edge snapping iterations. // Leave out altogether to disable. nFeatureSnapIter 10; //- Detect (geometric only) features by sampling the surface // (default=false). implicitFeatureSnap false; //- Use castellatedMeshControls::features (default = true) explicitFeatureSnap true; //- Detect points on multiple surfaces (only for explicitFeatureSnap) multiRegionFeatureSnap false; } // Settings for the layer addition. addLayersControls { // Are the thickness parameters below relative to the undistorted // size of the refined cell outside layer (true) or absolute sizes (false). relativeSizes true; // Per final patch (so not geometry!) the layer information layers { "(lowerWall|motorBike).*" { nSurfaceLayers 1; } } // Expansion factor for layer mesh expansionRatio 1.0; // Wanted thickness of final added cell layer. If multiple layers // is the thickness of the layer furthest away from the wall. // Relative to undistorted size of cell outside layer. // See relativeSizes parameter. finalLayerThickness 0.3; // Minimum thickness of cell layer. If for any reason layer // cannot be above minThickness do not add layer. // Relative to undistorted size of cell outside layer. minThickness 0.1; // If points get not extruded do nGrow layers of connected faces that are // also not grown. This helps convergence of the layer addition process // close to features. // Note: changed(corrected) w.r.t 17x! (didn't do anything in 17x) nGrow 0; // Advanced settings // When not to extrude surface. 0 is flat surface, 90 is when two faces // are perpendicular featureAngle 60; // At non-patched sides allow mesh to slip if extrusion direction makes // angle larger than slipFeatureAngle. slipFeatureAngle 30; // Maximum number of snapping relaxation iterations. Should stop // before upon reaching a correct mesh. nRelaxIter 3; // Number of smoothing iterations of surface normals nSmoothSurfaceNormals 1; // Number of smoothing iterations of interior mesh movement direction nSmoothNormals 3; // Smooth layer thickness over surface patches nSmoothThickness 10; // Stop layer growth on highly warped cells maxFaceThicknessRatio 0.5; // Reduce layer growth where ratio thickness to medial // distance is large maxThicknessToMedialRatio 0.3; // Angle used to pick up medial axis points // Note: changed(corrected) w.r.t 17x! 90 degrees corresponds to 130 in 17x. minMedianAxisAngle 90; // Create buffer region for new layer terminations nBufferCellsNoExtrude 0; // Overall max number of layer addition iterations. The mesher will exit // if it reaches this number of iterations; possibly with an illegal // mesh. nLayerIter 50; } // Generic mesh quality settings. At any undoable phase these determine // where to undo. meshQualityControls { #include "meshQualityDict" } // Advanced // Write flags writeFlags ( scalarLevels layerSets layerFields // write volScalarField for layer coverage ); // Merge tolerance. Is fraction of overall bounding box of initial mesh. // Note: the write tolerance needs to be higher than this. mergeTolerance 1e-6; // ************************************************************************* // My blockMesh is 17x5x5 and my pipe is 14 long in the x direction and has a diameter of 3 which spans the y and z directions. The pipe is pretty much centered in the blockMesh so one it's pretty easy to pick a point in within the pipe. Any idea of what could be causing this? |
|
October 1, 2019, 04:12 |
|
#2 |
Member
Piotr Ładyński
Join Date: Apr 2017
Posts: 55
Rep Power: 9 |
But does it produce external mesh or doesn't snap at all?
Does name 'pipe.stl' fit your mesh file name for sure? sHM can skip this input without error message if you misspeled it. Did you check your surface mesh (stl file) for 'watertightness'? Does: Code:
pipe.stl { type triSurfaceMesh; name pipe; regions { } } Code:
pipe { type triSurfaceMesh; file "pipe.stl"; } |
|
October 2, 2019, 08:39 |
|
#3 | |
New Member
anonymous
Join Date: Sep 2019
Location: North Carolina
Posts: 25
Rep Power: 7 |
Quote:
My stl wasn't water tight. Not sure how I missed that but it fixed it. Thanks! |
||
Tags |
block mesh, internal flow, location in mesh, snappy hex mesh |
Thread Tools | Search this Thread |
Display Modes | |
|
|
Similar Threads | ||||
Thread | Thread Starter | Forum | Replies | Last Post |
y+ = 1 boundary layer mesh with snappyHexMesh | Arzed23 | OpenFOAM Running, Solving & CFD | 6 | November 23, 2022 16:15 |
[snappyHexMesh] snappyHexMesh does not create any mesh except one for the reference cell | Arman_N | OpenFOAM Meshing & Mesh Conversion | 1 | May 20, 2019 18:16 |
[snappyHexMesh] SnappyHexMesh Patch Problem | Perschr | OpenFOAM Meshing & Mesh Conversion | 0 | October 8, 2016 13:09 |
[snappyHexMesh] sHM layer process keeps getting killed | MBttR | OpenFOAM Meshing & Mesh Conversion | 4 | August 15, 2016 04:21 |
[ICEM] Problem making structural mesh on a surface | froztbear | ANSYS Meshing & Geometry | 1 | November 10, 2011 09:52 |