CFD Online Logo CFD Online URL
www.cfd-online.com
[Sponsors]
Home > Forums > Software User Forums > SU2

Supersonic laminar flow over a flat plate

Register Blogs Members List Search Today's Posts Mark Forums Read

Reply
 
LinkBack Thread Tools Search this Thread Display Modes
Old   September 25, 2023, 11:06
Default Supersonic laminar flow over a flat plate
  #1
New Member
 
Ujesha Saigal
Join Date: Sep 2023
Posts: 1
Rep Power: 0
ujesha is on a distinguished road
I am trying to solve supersonic laminar flow over a flat plate with a mesh resolution of 2.5e-3 (1280000 nodes). Inlet Temperature is 300K, density is 1.225 kg/m^3 and velocity is 868 m/s. Reynold's number is 20000. I have tried changing CFL numbers to 5,10 and 1 but the value of Cp in the line plot is more than 700, which should be less than 1 in my case although the skin friction coefficient is nearly the same as compared to the Blasius analytical solution. I have read that in supersonic flow whatever outlet pressure we input is unnecessary because in the case of supersonic flow outlet pressure is extrapolated itself. I have attached my cfg file and mesh for review. Kindly let me know what is wrong with my file.

% SU2 configuration file %
% Case description: Laminar flow over a flat plate with zero pressure gradient %
% Author: Thomas D. Economon %
% Institution: Stanford University %
% Date: 2013.09.30 %
% File Version 5.0.0 "Raven" %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% ------------- DIRECT, ADJOINT, AND LINEARIZED PROBLEM DEFINITION ------------%
%
% Physical governing equations (EULER, NAVIER_STOKES,
% WAVE_EQUATION, HEAT_EQUATION, FEM_ELASTICITY,
% POISSON_EQUATION)
SOLVER= NAVIER_STOKES
%
% Specify turbulence model (NONE, SA, SA_NEG, SST)
KIND_TURB_MODEL= NONE
%
% Mathematical problem (DIRECT, CONTINUOUS_ADJOINT)
MATH_PROBLEM= DIRECT
%
% Restart solution (NO, YES)
RESTART_SOL= NO

% -------------------- COMPRESSIBLE FREE-STREAM DEFINITION --------------------%
%
% Mach number (non-dimensional, based on the free-stream values)
MACH_NUMBER= 2.5
%
% Angle of attack (degrees, only for compressible flows)
AOA= 0.0
%
% Side-slip angle (degrees, only for compressible flows)
SIDESLIP_ANGLE= 0.0
%
% Free-stream temperature (288.15 K by default)
FREESTREAM_TEMPERATURE= 300
%
% Reynolds number (non-dimensional, based on the free-stream values)
REYNOLDS_NUMBER= 20000
%
% Reynolds length (1 m by default)
REYNOLDS_LENGTH= 1.2

% ---------------------- REFERENCE VALUE DEFINITION ---------------------------%
%
% Reference origin for moment computation
REF_ORIGIN_MOMENT_X = 0.25
REF_ORIGIN_MOMENT_Y = 0.00
REF_ORIGIN_MOMENT_Z = 0.00
%
% Reference length for pitching, rolling, and yawing non-dimensional moment
REF_LENGTH= 1.0
%
% Reference area for force coefficients (0 implies automatic calculation)
REF_AREA= 0.3048

% -------------------- BOUNDARY CONDITION DEFINITION --------------------------%
%
% Navier-Stokes (no-slip), constant heat flux wall marker(s) (NONE = no marker)
% Format: ( marker name, constant heat flux (J/m^2), ... )
MARKER_HEATFLUX= ( wall, 0.0 )
%
% Navier-Stokes (no-slip), isothermal wall marker(s) (NONE = no marker)
% Format: ( marker name, constant wall temperature (K), ... )
MARKER_ISOTHERMAL= ( NONE )
%
% Symmetry boundary marker(s) (NONE = no marker)
MARKER_SYM= ( symmetry )
%
% Inlet boundary marker(s) (NONE = no marker)
% Format: ( inlet marker, total temperature, total pressure, flow_direction_x,
% flow_direction_y, flow_direction_z, ... ) where flow_direction is
% a unit vector.
MARKER_SUPERSONIC_INLET = (inlet, 300, 105472.5, 868.0, 0.0, 0.0)
%
% Outlet boundary marker(s) (NONE = no marker)
% Format: ( outlet marker, back pressure (static), ... )
MARKER_OUTLET= (outlet, 90000)
%
% Marker(s) of the surface to be plotted or designed
MARKER_PLOTTING= ( wall )
%
% Marker(s) of the surface where the functional (Cd, Cl, etc.) will be evaluated
MARKER_MONITORING= ( wall )

% ------------- COMMON PARAMETERS DEFINING THE NUMERICAL METHOD ---------------%
%
% Numerical method for spatial gradients (GREEN_GAUSS, WEIGHTED_LEAST_SQUARES)
NUM_METHOD_GRAD= WEIGHTED_LEAST_SQUARES
%
% Courant-Friedrichs-Lewy condition of the finest grid
CFL_NUMBER= 5
%
% Adaptive CFL number (NO, YES)
CFL_ADAPT= NO
%
% Parameters of the adaptive CFL number (factor down, factor up, CFL min value,
% CFL max value )
CFL_ADAPT_PARAM= ( 0.1, 2.0, 100.0, 1e10 )
%
% Number of total iterations
ITER= 100000

% ------------------------ LINEAR SOLVER DEFINITION ---------------------------%
%
% Linear solver for implicit formulations (BCGSTAB, FGMRES)
LINEAR_SOLVER= FGMRES
%
% Preconditioner of the Krylov linear solver (JACOBI, LINELET, LU_SGS)
LINEAR_SOLVER_PREC= ILU
%
% Minimum error of the linear solver for implicit formulations
LINEAR_SOLVER_ERROR= 1E-6
%
% Max number of iterations of the linear solver for the implicit formulation
LINEAR_SOLVER_ITER= 10

% -------------------------- MULTIGRID PARAMETERS -----------------------------%
%
% Multi-Grid Levels (0 = no multi-grid)
MGLEVEL= 0
%
% Multi-grid cycle (V_CYCLE, W_CYCLE, FULLMG_CYCLE)
MGCYCLE= W_CYCLE
%
% Multi-grid pre-smoothing level
MG_PRE_SMOOTH= ( 1, 2, 3, 3 )
%
% Multi-grid post-smoothing level
MG_POST_SMOOTH= ( 0, 0, 0, 0 )
%
% Jacobi implicit smoothing of the correction
MG_CORRECTION_SMOOTH= ( 0, 0, 0, 0 )
%
% Damping factor for the residual restriction
MG_DAMP_RESTRICTION= 0.9
%
% Damping factor for the correction prolongation
MG_DAMP_PROLONGATION= 0.9

% -------------------- FLOW NUMERICAL METHOD DEFINITION -----------------------%
%
% Convective numerical method (JST, LAX-FRIEDRICH, CUSP, ROE, AUSM, HLLC,
% TURKEL_PREC, MSW)
CONV_NUM_METHOD_FLOW= ROE
%
% Monotonic Upwind Scheme for Conservation Laws (TVD) in the flow equations.
% Required for 2nd order upwind schemes (NO, YES)
MUSCL_FLOW= NO
%
% Slope limiter (NONE, VENKATAKRISHNAN, VENKATAKRISHNAN_WANG,
% BARTH_JESPERSEN, VAN_ALBADA_EDGE)
SLOPE_LIMITER_FLOW= NONE
%
% Coefficient for the limiter (smooth regions)
VENKAT_LIMITER_COEFF= 0.05
%
% 2nd and 4th order artificial dissipation coefficients
JST_SENSOR_COEFF= ( 0.5, 0.02 )
%
% Time discretization (RUNGE-KUTTA_EXPLICIT, EULER_IMPLICIT, EULER_EXPLICIT)
TIME_DISCRE_FLOW= EULER_IMPLICIT

% --------------------------- CONVERGENCE PARAMETERS --------------------------%
%
% Convergence criteria (CAUCHY, RESIDUAL)
CONV_FIELD= RMS_DENSITY
%
% Min value of the residual (log10 of the residual)
CONV_RESIDUAL_MINVAL= -12
%
% Start convergence criteria at iteration number
CONV_STARTITER= 10
%
% Number of elements to apply the criteria
CONV_CAUCHY_ELEMS= 100
%
% Epsilon to control the series convergence
CONV_CAUCHY_EPS= 1E-6

% ------------------------- INPUT/OUTPUT INFORMATION --------------------------%
%
% Mesh input file
MESH_FILENAME= lpus2.su2
%
% Mesh input file format (SU2, CGNS, NETCDF_ASCII)
MESH_FORMAT= SU2
%
% Mesh output file
MESH_OUT_FILENAME= mesh_out.su2
%
% Restart flow input file
SOLUTION_FILENAME= solution_flow.dat
%
% Restart adjoint input file
SOLUTION_ADJ_FILENAME= solution_adj.dat
%
% Output file format (PARAVIEW, TECPLOT, STL)
TABULAR_FORMAT= CSV
%
% Output file convergence history (w/o extension)
CONV_FILENAME= history
%
% Output file restart flow
RESTART_FILENAME= restart_flow.dat
%
% Output file restart adjoint
RESTART_ADJ_FILENAME= restart_adj.dat
%
% Output file flow (w/o extension) variables
VOLUME_FILENAME= flow
%
% Output file adjoint (w/o extension) variables
VOLUME_ADJ_FILENAME= adjoint
%
% Output objective function gradient (using continuous adjoint)
GRAD_OBJFUNC_FILENAME= of_grad.dat
%
% Output file surface flow coefficient (w/o extension)
SURFACE_FILENAME= surface_flow
%
% Output file surface adjoint coefficient (w/o extension)
SURFACE_ADJ_FILENAME= surface_adjoint
%
%
% Screen output
SCREEN_OUTPUT=(INNER_ITER, WALL_TIME, RMS_DENSITY, RMS_ENERGY, LIFT, DRAG)

Last edited by ujesha; October 6, 2023 at 11:03. Reason: My presentation was not elaborate.
ujesha is offline   Reply With Quote

Old   September 25, 2023, 17:13
Default
  #2
Senior Member
 
bigfoot
Join Date: Dec 2011
Location: Netherlands
Posts: 533
Rep Power: 17
bigfootedrockmidget is on a distinguished road
Guide: How to ask a question on the forums
bigfootedrockmidget is offline   Reply With Quote

Reply

Thread Tools Search this Thread
Search this Thread:

Advanced Search
Display Modes

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is Off
Trackbacks are Off
Pingbacks are On
Refbacks are On


Similar Threads
Thread Thread Starter Forum Replies Last Post
Flat Plate Boundary Layer Height kennedy1992 Fidelity CFD 7 February 24, 2016 04:45
supersonic flow over flat plate varunjain89 Main CFD Forum 1 March 23, 2010 08:26
Flow over a flat plate & Flow over a cylinder cfdxue Main CFD Forum 0 November 26, 2007 23:26
supersonic flow past flat plate shuo Main CFD Forum 0 July 28, 2007 19:47
2d supersonic flow over flat plate puzzled Main CFD Forum 2 March 17, 2004 18:07


All times are GMT -4. The time now is 23:27.