|
[Sponsors] |
![]() |
![]() |
#1 |
Member
Zhang
Join Date: Mar 2023
Posts: 72
Rep Power: 3 ![]() |
Hi, SU2ers
I have encountered the issue of "NaN detected" in my simulation previously and successfully addressed it by implementing a first-order wind scheme, reducing the CFL number, and employing other strategies. As a result, my simulation progressed smoothly to a certain extent. However, the same solutions proved ineffective on this occasion. The mesh I am using represents an aircraft inlet with a sidewall. Interestingly, the simulation converges well in the absence of a sidewall. However, when the sidewall is present, the calculation diverges, leading to the detection of "NaN." I have attached my configuration file below for your reference. I would sincerely appreciate any assistance or insights you may provide on this matter. Thank you very much for your help. Best regards, Zhang ---------------------------------------------------------------------------------------------------------------------- SOLVER= RANS KIND_TURB_MODEL=SST SST_OPTIONS=V2003m Mathematical problem (DIRECT, CONTINUOUS_ADJOINT) MATH_PROBLEM= DIRECT % % Axisymmetric simulation, only compressible flows (NO, YES) AXISYMMETRIC= NO % % Restart solution (NO, YES) RESTART_SOL= NO SYSTEM_MEASUREMENTS= SI ITER = 30000 % Mach number (non-dimensional, based on the free-stream values) the only parameter of the computation!!! MACH_NUMBER= 6 % % Angle of attack (degrees, only for compressible flows) AOA= 0 % % Side-slip angle (degrees, only for compressible flows) SIDESLIP_ANGLE= 0.0 % % Init option to choose between Reynolds (default) or thermodynamics quantities % for initializing the solution (REYNOLDS, TD_CONDITIONS) INIT_OPTION= REYNOLDS % % Free-stream option to choose between density and temperature (default) for % initializing the solution (TEMPERATURE_FS, DENSITY_FS) FREESTREAM_OPTION= TEMPERATURE_FS % % Free-stream pressure (101325.0 N/m^2, 2116.216 psf by default) FREESTREAM_PRESSURE= 1998 % % Free-stream temperature (288.15 K, 518.67 R by default) FREESTREAM_TEMPERATURE= 223.1 FREESTREAM_DENSITY= 0.0312 % % Reynolds number (non-dimensional, based on the free-stream values) REYNOLDS_NUMBER= 3735662 % % Reynolds length (1 m, 1 inch by default) REYNOLDS_LENGTH= 1.0 % Reference origin for moment computation (m or in) REF_ORIGIN_MOMENT_X = 0.25 REF_ORIGIN_MOMENT_Y = 0.00 REF_ORIGIN_MOMENT_Z = 0.00 % % Reference length for moment non-dimensional coefficients (m or in) REF_LENGTH= 1.0 % % Reference area for non-dimensional force coefficients (0 implies automatic % calculation) (m^2 or in^2) REF_AREA= 1.0 % % Aircraft semi-span (0 implies automatic calculation) (m or in) SEMI_SPAN= 0.0 % Fluid model (STANDARD_AIR, IDEAL_GAS, VW_GAS, PR_GAS, % CONSTANT_DENSITY, INC_IDEAL_GAS) FLUID_MODEL= STANDARD_AIR % % Ratio of specific heats (1.4 default and the value is hardcoded % for the model STANDARD_AIR, compressible only) GAMMA_VALUE= 1.4 % % Specific gas constant (287.058 J/kg*K default and this value is hardcoded % for the model STANDARD_AIR, compressible only) GAS_CONSTANT= 287.058 % % Critical Temperature (131.00 K by default) CRITICAL_TEMPERATURE= 131.00 % % Critical Pressure (3588550.0 N/m^2 by default) CRITICAL_PRESSURE= 3588550.0 % % Acentri factor (0.035 (air)) ACENTRIC_FACTOR= 0.035 % % Specific heat at constant pressure, Cp (1004.703 J/kg*K (air)). % Incompressible fluids with energy eqn. only (CONSTANT_DENSITY, INC_IDEAL_GAS). SPECIFIC_HEAT_CP= 1004.703 % % Molecular weight for an incompressible ideal gas (28.96 g/mol (air) default) % Incompressible fluids with energy eqn. only (CONSTANT_DENSITY, INC_IDEAL_GAS). MOLECULAR_WEIGHT= 28.96 % % Thermal expansion coefficient (0.00347 K^-1 (air)) % Used with Boussinesq approx. (incompressible, BOUSSINESQ density model only) THERMAL_EXPANSION_COEFF= 0.00347 % Viscosity model (SUTHERLAND, CONSTANT_VISCOSITY). VISCOSITY_MODEL= SUTHERLAND % % Molecular Viscosity that would be constant (1.716E-5 by default) MU_CONSTANT= 1.716E-5 % % Sutherland Viscosity Ref (1.716E-5 default value for AIR SI) MU_REF= 1.716E-5 % % Sutherland Temperature Ref (273.15 K default value for AIR SI) MU_T_REF= 273.15 % % Sutherland constant (110.4 default value for AIR SI) SUTHERLAND_CONSTANT= 110.4 % Conductivity model (CONSTANT_CONDUCTIVITY, CONSTANT_PRANDTL). CONDUCTIVITY_MODEL= CONSTANT_PRANDTL % % Molecular Thermal Conductivity that would be constant (0.0257 by default) DIFFUSIVITY_CONSTANT= 0.0257 % % Laminar Prandtl number (0.72 (air), only for CONSTANT_PRANDTL) PRANDTL_LAM= 0.72 % % Turbulent Prandtl number (0.9 (air), only for CONSTANT_PRANDTL) PRANDTL_TURB= 0.90 % Navier-Stokes (no-slip), constant heat flux wall marker(s) (NONE = no marker) % Format: ( marker name, constant heat flux (J/m^2), ... ) MARKER_HEATFLUX= ( RAMP, 0.0, COWL,0.0, UPWALL,0.0, SIDEWALL,0.0) % Far-field boundary marker(s) (NONE = no marker) MARKER_FAR= ( FAR ) % % Symmetry boundary marker(s) (NONE = no marker) MARKER_SYM= ( SYM1, SYM2 ) MARKER_OUTLET= ( OUT, 1998, FAROUT, 1998 ) % Marker(s) of the surface in the surface flow solution file MARKER_PLOTTING = ( RAMP ) % % Marker(s) of the surface where the non-dimensional coefficients are evaluated. MARKER_MONITORING = ( OUT ) % % Viscous wall markers for which wall functions must be applied. (NONE = no marker) % Format: ( marker name, wall function type, ... ) MARKER_WALL_FUNCTIONS= ( NONE, NO_WALL_FUNCTION ) % % Marker(s) of the surface where custom thermal BC's are defined. MARKER_PYTHON_CUSTOM = ( NONE ) % % Marker(s) of the surface where obj. func. (design problem) will be evaluated MARKER_DESIGNING = ( OUT ) % % Marker(s) of the surface that is going to be analyzed in detail (massflow, average pressure, distortion, etc) MARKER_ANALYZE = ( OUT ) % % Method to compute the average value in MARKER_ANALYZE (AREA, MASSFLUX). MARKER_ANALYZE_AVERAGE = MASSFLUX % Marker(s) of the surface where geometrical based function will be evaluated GEO_MARKER= ( NONE ) % % Description of the geometry to be analyzed (AIRFOIL, WING) GEO_DESCRIPTION= AIRFOIL % % Coordinate of the stations to be analyzed GEO_LOCATION_STATIONS= (0.0, 0.5, 1.0) % % Geometrical bounds (Y coordinate) for the wing geometry analysis or % fuselage evaluation (X coordinate) GEO_BOUNDS= (1.5, 3.5) % % Plot loads and Cp distributions on each airfoil section GEO_PLOT_STATIONS= NO % % Number of section cuts to make when calculating wing geometry GEO_NUMBER_STATIONS= 25 % % Geometrical evaluation mode (FUNCTION, GRADIENT) GEO_MODE= FUNCTION % Numerical method for spatial gradients (GREEN_GAUSS, WEIGHTED_LEAST_SQUARES) NUM_METHOD_GRAD= GREEN_GAUSS % % CFL number (initial value for the adaptive CFL number) CFL_NUMBER= 0.5 % % Adaptive CFL number (NO, YES) CFL_ADAPT= NO % % Parameters of the adaptive CFL number (factor down, factor up, CFL min value, % CFL max value ) CFL_ADAPT_PARAM= ( 1.5, 0.5, 1.25, 50.0 ) % % Maximum Delta Time in local time stepping simulations MAX_DELTA_TIME= 1E6 % % Runge-Kutta alpha coefficients RK_ALPHA_COEFF= ( 0.66667, 0.66667, 1.000000 ) % Monotonic Upwind Scheme for Conservation Laws (TVD) in the flow equations. % Required for 2nd order upwind schemes (NO, YES) MUSCL_FLOW= NO % % Slope limiter (NONE, VENKATAKRISHNAN, VENKATAKRISHNAN_WANG, % BARTH_JESPERSEN, VAN_ALBADA_EDGE) SLOPE_LIMITER_FLOW= VENKATAKRISHNAN % % Monotonic Upwind Scheme for Conservation Laws (TVD) in the turbulence equations. % Required for 2nd order upwind schemes (NO, YES) MUSCL_TURB= NO % % Slope limiter (NONE, VENKATAKRISHNAN, VENKATAKRISHNAN_WANG, % BARTH_JESPERSEN, VAN_ALBADA_EDGE) SLOPE_LIMITER_TURB= VENKATAKRISHNAN % % Coefficient for the Venkat's limiter (upwind scheme). A larger values decrease % the extent of limiting, values approaching zero cause % lower-order approximation to the solution (0.05 by default) VENKAT_LIMITER_COEFF= 0.05 % % Coefficient for the adjoint sharp edges limiter (3.0 by default). % ADJ_SHARP_LIMITER_COEFF= 3.0 % % Freeze the value of the limiter after a number of iterations LIMITER_ITER= 999999 % % 1st order artificial dissipation coefficients for % the Lax–Friedrichs method ( 0.15 by default ) LAX_SENSOR_COEFF= 0.15 % % 2nd and 4th order artificial dissipation coefficients for % the JST method ( 0.5, 0.02 by default ) JST_SENSOR_COEFF= ( 0.5, 0.02 ) % % 1st order artificial dissipation coefficients for % the adjoint Lax–Friedrichs method ( 0.15 by default ) % ADJ_LAX_SENSOR_COEFF= 0.15 % % 2nd, and 4th order artificial dissipation coefficients for % the adjoint JST method ( 0.5, 0.02 by default ) % ADJ_JST_SENSOR_COEFF= ( 0.5, 0.02 ) LINEAR_SOLVER= FGMRES % % Preconditioner of the Krylov linear solver (ILU, LU_SGS, LINELET, JACOBI) LINEAR_SOLVER_PREC= LU_SGS % % Linael solver ILU preconditioner fill-in level (0 by default) LINEAR_SOLVER_ILU_FILL_IN= 0 % % Minimum error of the linear solver for implicit formulations LINEAR_SOLVER_ERROR= 0.1 % % Max number of iterations of the linear solver for the implicit formulation LINEAR_SOLVER_ITER= 5 % Convective numerical method (JST, LAX-FRIEDRICH, CUSP, ROE, AUSM, HLLC, % TURKEL_PREC, MSW, FDS) CONV_NUM_METHOD_FLOW= ROE % % Roe Low Dissipation function for Hybrid RANS/LES simulations (FD, NTS, NTS_DUCROS) %ROE_LOW_DISSIPATION= FD % % Post-reconstruction correction for low Mach number flows (NO, YES) LOW_MACH_CORR= NO % % Roe-Turkel preconditioning for low Mach number flows (NO, YES) LOW_MACH_PREC= NO % % Entropy fix coefficient (0.0 implies no entropy fixing, 1.0 implies scalar % artificial dissipation) ENTROPY_FIX_COEFF= 0.0 % % Time discretization (RUNGE-KUTTA_EXPLICIT, EULER_IMPLICIT, EULER_EXPLICIT) TIME_DISCRE_FLOW= EULER_IMPLICIT % % Relaxation coefficient RELAXATION_FACTOR_ADJOINT= 0.95 % Convective numerical method (SCALAR_UPWIND) CONV_NUM_METHOD_TURB= SCALAR_UPWIND % % Time discretization (EULER_IMPLICIT) TIME_DISCRE_TURB= EULER_IMPLICIT % % Reduction factor of the coefficient in the turbulence problem CFL_REDUCTION_TURB= 1.0 CONV_RESIDUAL_MINVAL= -10 CONV_STARTITER= 0 CONV_CAUCHY_ELEMS= 100 CONV_CAUCHY_EPS= 0.1 OUTPUT_FILES= (RESTART, TECPLOT) % list of writing frequencies corresponding to the list in OUTPUT_FILES OUTPUT_WRT_FREQ= 500, 5 % HISTORY_WRT_FREQ_OUTER= 50 % HISTORY_WRT_FREQ_TIME= 50 % Mesh input file MESH_FILENAME= inlet.cgns % % Mesh input file format (SU2, CGNS, NETCDF_ASCII) MESH_FORMAT= CGNS % % Mesh output file MESH_OUT_FILENAME= mesh_out.su2 % % Restart flow input file SOLUTION_FILENAME= restart_flow.dat % % Restart adjoint input file SOLUTION_ADJ_FILENAME= solution_adj.dat % % Output file format (PARAVIEW, TECPLOT, STL) TABULAR_FORMAT= TECPLOT % % Output file convergence history (w/o extension) CONV_FILENAME= history % % Output file restart flow RESTART_FILENAME= restart_flow.dat % % Output file restart adjoint RESTART_ADJ_FILENAME= restart_adj.dat % % Output file flow (w/o extension) variables VOLUME_FILENAME= flow VOLUME_OUTPUT=(COORDINATES, SOLUTION, PRIMITIVE, MEAN_DENSITY, MEAN_VELOCITY-X, MEAN_VELOCITY-Y, MEAN_VELOCITY-Z, MEAN_PRESSURE) % % Output file adjoint (w/o extension) variables VOLUME_ADJ_FILENAME= adjoint % % Output objective function gradient (using continuous adjoint) GRAD_OBJFUNC_FILENAME= of_grad.dat % % Output file surface flow coefficient (w/o extension) SURFACE_FILENAME= surface_flow % % Output file surface adjoint coefficient (w/o extension) SURFACE_ADJ_FILENAME= surface_adjoint % % % Screen output SCREEN_OUTPUT=(TIME_ITER, INNER_ITER, LIFT, DRAG, TOTAL_HEATFLUX, SURFACE_STATIC_PRESSURE) % % History output groups (use 'SU2_CFD -d <config_file>' to view list of available fields) HISTORY_OUTPUT= (ITER, SURFACE_MACH, SURFACE_MASSFLOW, SURFACE_STATIC_PRESSURE ) |
|
![]() |
![]() |
![]() |
![]() |
#2 |
Senior Member
bigfoot
Join Date: Dec 2011
Location: Netherlands
Posts: 716
Rep Power: 21 ![]() |
Hi, do you have the mesh available?
What do you mean with aircraft inlet? You mean the inlet of the engine? |
|
![]() |
![]() |
![]() |
![]() |
#3 | |
Member
Zhang
Join Date: Mar 2023
Posts: 72
Rep Power: 3 ![]() |
Quote:
You can access the mesh file through the link provided below. https://drive.google.com/file/d/11d2...ew?usp=sharing Yours, Zhang |
||
![]() |
![]() |
![]() |
Thread Tools | Search this Thread |
Display Modes | |
|
|
![]() |
||||
Thread | Thread Starter | Forum | Replies | Last Post |
Convergence Problem - Transient Simulation | gemxx | Main CFD Forum | 0 | July 15, 2018 10:36 |
Mapping Field Data for Mesh Regions from Another Simulation | veterator | OpenFOAM Pre-Processing | 1 | July 10, 2018 06:28 |
Surface Source - Fixed Temperature? | robtheslob | FloEFD, FloWorks & FloTHERM | 18 | May 12, 2017 03:28 |
Simulation FPEs - turbulence for transient and steady-state? | DaveR | OpenFOAM Running, Solving & CFD | 5 | March 5, 2017 16:06 |
setting up a simulation with multiple interactions | phandy | OpenFOAM Running, Solving & CFD | 1 | October 6, 2014 04:16 |