# Free-Surface Piercing NACA 0024 Hydrofoil

### From CFD-Wiki

(→Mesh) |
m (→Mesh) |
||

Line 7: | Line 7: | ||

==Mesh== | ==Mesh== | ||

- | + | <br> | |

[[Image:vofnaca0024meshdetails.jpg]]<br><br> | [[Image:vofnaca0024meshdetails.jpg]]<br><br> | ||

The mesh for this problem contains 118,800 cells. The solution is time dependent. I monitor the drag coefficient on the profile to see when the problem has reached a stationary solution. I start with a flat free-surface and run the calculations on a coarse mesh. Then I use the solution of the coarse mesh as an initial solution for the fine mesh. | The mesh for this problem contains 118,800 cells. The solution is time dependent. I monitor the drag coefficient on the profile to see when the problem has reached a stationary solution. I start with a flat free-surface and run the calculations on a coarse mesh. Then I use the solution of the coarse mesh as an initial solution for the fine mesh. |

## Revision as of 12:47, 16 October 2009

## Contents |

## Introduction

This is a validation case for a 3-dimensional Volume of Fluid [Ref. 1] method.

The above picture was taken from Ref. 2. It is a photograph of the experimental setup of the surface piercing foil. It shows a NACA 0024 profile with a chord of 1.2 m, which moves horizontally through the water at a velocity of 1.27 m s-1. This situation corresponds to a Froude number of 0.37 and a Reynold’s number of 1.52E6. When the flow has evolved to a steady situation, the height of the free-surface is measured at a number of positions along the profile.

## Mesh

The mesh for this problem contains 118,800 cells. The solution is time dependent. I monitor the drag coefficient on the profile to see when the problem has reached a stationary solution. I start with a flat free-surface and run the calculations on a coarse mesh. Then I use the solution of the coarse mesh as an initial solution for the fine mesh.

## Results

## References

1. C.W. Hirt, B.D. Nichols, Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries, J. Comp. Phys. 39, pp. 201-225 (1981)

2. Shin Hyung Rhee, Boris P. Makarov, H. Krishinan, Vladimir Ivanov, Assessment of the volume of fluid method for free-surface wave flow, J. Mar. Sci. Technol. 10, pp. 173-180 (2005)