# Geom 1.f90 - calculation of geometry properties

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
```
!Sample program for solving Smith-Hutton Test using different schemes
!of covective terms approximation -  Geometry computing modul

!This program is free software; you can redistribute it and/or
!modify it under the terms of the GNU General Public License

!This program is distributed in the hope that it will be useful,
!but WITHOUT ANY WARRANTY; without even the implied warranty of
!MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
!GNU General Public License for more details.

!You should have received a copy of the GNU General Public License
!along with this program; if not, write to the Free Software
!Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.

!**********************************************************************
Subroutine Geom

include 'icomm_1.f90'

! calculation Xp,Yp
! ------------------------------------------------------------------------

do  2 I=2,NXmax
do  2 J=2,NYmax

Xp(I,J)=( X(i-1,j-1) + X(i-1,j  ) + &

X(i  ,j  ) + X(i  ,j-1)      ) * 0.25

Yp(I,J)=(  Y(i-1,j-1) + Y(i-1,j  ) + &

Y(i  ,j  ) + Y(i  ,j-1)     ) * 0.25

2 continue
! ------------------------------------------------------------------------

do 4 I=2,NXmax

Xp(i,1      ) = ( X(i  ,1    ) + X(i-1,1    ) ) * 0.5
Xp(i,NYmax+1) = ( X(i  ,NYmax) + X(i-1,NYmax) ) * 0.5

Yp(i,1      ) = ( Y(i  ,1    ) + Y(i-1,1    ) ) * 0.5
Yp(i,NYmax+1) = ( Y(i  ,NYmax) + Y(i-1,NYmax) ) * 0.5

4 continue
! ------------------------------------------------------------------------
Xp(1      ,      1) = X(    1,    1)
Xp(NXmax+1,      1) = X(NXmax,    1)
Xp(      1,NYmax+1) = X(    1,NYmax)
Xp(NXmax+1,NYmax+1) = X(NXmax,NYmax)

Yp(1      ,      1) = Y(    1,    1)
Yp(NXmax+1,      1) = Y(NXmax,    1)
Yp(      1,NYmax+1) = Y(    1,NYmax)
Yp(NXmax+1,NYmax+1) = Y(NXmax,NYmax)
!--------------------------------------------------------------------------
! ------------------------------------------------------------------------
do 5 J=2,NYmax

Yp(1      ,j ) = ( Y(1     ,j) + Y(1    ,j-1) ) * 0.5
Yp(NXmax+1,j ) = ( Y(NXmax ,j) + Y(NXmax,j-1) ) * 0.5
Xp(1      ,j ) = ( X(1     ,j) + X(1    ,j-1) ) * 0.5
Xp(NXmax+1,j ) = ( X(NXmax ,j) + X(NXmax,j-1) ) * 0.5

5 continue
!--------------------------------------------------------------------------
! ------------------------------------------------------------------------

! Xi (vertical)

Do 101 I=1,NXmax
Do 101 J=1,NYmax-1

X_xi(I,J) = X(i  ,j+1) - X(i  ,j  )
Y_xi(I,J) = Y(i  ,j+1) - Y(i  ,j  )

101 continue

! Eta (horisontal)

Do 102 I=1,NXmax-1
Do 102 J=1,NYmax

X_et(I,J) = X(i+1,j  ) - X(i  ,j  )
Y_et(I,J) = Y(i+1,j  ) - Y(i  ,j  )

102 continue

!--------------------------------------------------------------------------
! ------------------------------------------------------------------------

! Xi (vertical)

Do 201 I=1,NXmaxP
Do 201 J=1,NYmax

Del_X_xi(i  ,j  ) =  Xp(i  ,j+1) - Xp(i  ,j  )
Del_Y_xi(i  ,j  ) =  Yp(i  ,j+1) - Yp(i  ,j  )

201 continue

! Eta (horisontal)

Do 202 I=1,NXmax
Do 202 J=1,NYmaxP

Del_X_et(i  ,j  ) =  Xp(i+1,j  ) - Xp(i  ,j  )
Del_Y_et(i  ,j  ) =  Yp(i+1,j  ) - Yp(i  ,j  )

202 continue

!--------------------------------------------------------------------------
! ------------------------------------------------------------------------

Return
End
```