|
[Sponsors] |
Error - Solar absorber - Solar Thermal Radiation |
|
LinkBack | Thread Tools | Search this Thread | Display Modes |
August 29, 2016, 11:10 |
Error - Solar absorber - Solar Thermal Radiation
|
#1 |
New Member
Michael Kraus
Join Date: May 2016
Posts: 16
Rep Power: 10 |
Hello together!
I hope you can help me with my problem: I would like to simulate the flow pattern and heat distribution in a solar absorber. Solar radiation goes through the glass plate and radiates to the cylinder bottom. The cylinder re-radiates the solar ray´s to the cylinder walls and back to the glass plate. Nitorgen flows inside the cylinder (from inlet to outlet) and gets heated by the solar rays and by the "hot cylinder wall". See attached images Cut, Front, Hinten, side. I cant find my mistake I get every time this error: Slave: 2 ---------------------------------- Slave: 2 Error in subroutine FNDVAR : Slave: 2 Error finding variable RCOEF_SL1 Slave: 2 GETVAR originally called by subroutine get_SEMISS_CSBELG Parallel run: Received message from slave ----------------------------------------- Slave partition : 2 Slave routine : ErrAction Master location : Message Handler Message label : 001100279 Message follows below - : +--------------------------------------------------------------------+ | ERROR #001100279 has occurred in subroutine ErrAction. | | Message: | | Stopped in routine +--------------------------------------------------------------------+ Short overview about my settings: Solid Domains: Glass (Glass Plate), Ring (Steel) , Cylinder(Steel) Fluid Domain: Nitrogen (N2 CHT) (See Image CFX Pre) Radiation: Glass ( Monte Carlo ), Cylinder ( Monte Carlo ) The N2 is "passive", it radiates not! The source of the Radiation is on the outside-surface of the glass plate - and is set as "Boundary Source / Radiation Source with Directional Radiation Flux" to this boundary ( 1000 KW m^-2) "Outside Surfaces": Heat convection (no Adiabatic walls) Inlet: constant mass flow, constant temp. Outlet: pressure Where is my mistake? I think my boundary conditions and radiation settings are correct (?) I appreciate any help, alternative solution proposals too! Thanks a lot! Regards |
|
August 29, 2016, 11:12 |
Detailed Info´s
|
#2 |
New Member
Michael Kraus
Join Date: May 2016
Posts: 16
Rep Power: 10 |
Detailed information about my settings:
+--------------------------------------------------------------------+ | | | CFX Command Language for Run | | | +--------------------------------------------------------------------+ LIBRARY: MATERIAL: Glass Plate Material Group = CHT Solids,Particle Solids Option = Pure Substance Thermodynamic State = Solid PROPERTIES: Option = General Material EQUATION OF STATE: Density = 2500 [kg m^-3] Molar Mass = 1 [kg kmol^-1] Option = Value END SPECIFIC HEAT CAPACITY: Option = Value Specific Heat Capacity = 7.50E+02 [J kg^-1 K^-1] END REFERENCE STATE: Option = Specified Point Reference Specific Enthalpy = 0 [J/kg] Reference Specific Entropy = 0 [J/kg/K] Reference Temperature = 25 [C] END THERMAL CONDUCTIVITY: Option = Value Thermal Conductivity = 1.4 [W m^-1 K^-1] END ABSORPTION COEFFICIENT: Absorption Coefficient = 8 [m^-1] Option = Value END SCATTERING COEFFICIENT: Option = Value Scattering Coefficient = 0. [m^-1] END REFRACTIVE INDEX: Option = Value Refractive Index = 1.0 END END END MATERIAL: N2 at STP Material Description = Nitrogen N2 at STP (0 C and 1 atm) Material Group = Constant Property Gases Option = Pure Substance Thermodynamic State = Gas PROPERTIES: Option = General Material EQUATION OF STATE: Density = 1.250 [kg m^-3] Molar Mass = 28.01 [kg kmol^-1] Option = Value END SPECIFIC HEAT CAPACITY: Option = Value Specific Heat Capacity = 1040 [J kg^-1 K^-1] Specific Heat Type = Constant Pressure END REFERENCE STATE: Option = Specified Point Reference Pressure = 1 [atm] Reference Specific Enthalpy = -2.5896365E+04 [J/kg] Reference Specific Entropy = 6.7454037E+03 [J/kg/K] Reference Temperature = 0 [C] END DYNAMIC VISCOSITY: Dynamic Viscosity = 17.7E-06 [kg m^-1 s^-1] Option = Value END THERMAL CONDUCTIVITY: Option = Value Thermal Conductivity = 259E-04 [W m^-1 K^-1] END ABSORPTION COEFFICIENT: Absorption Coefficient = 1.0 [m^-1] Option = Value END SCATTERING COEFFICIENT: Option = Value Scattering Coefficient = 0.0 [m^-1] END REFRACTIVE INDEX: Option = Value Refractive Index = 1.0 [m m^-1] END THERMAL EXPANSIVITY: Option = Value Thermal Expansivity = 0.00366 [K^-1] END END END MATERIAL: Steel Material Group = CHT Solids,Particle Solids Option = Pure Substance Thermodynamic State = Solid PROPERTIES: Option = General Material EQUATION OF STATE: Density = 7854 [kg m^-3] Molar Mass = 55.85 [kg kmol^-1] Option = Value END SPECIFIC HEAT CAPACITY: Option = Value Specific Heat Capacity = 4.34E+02 [J kg^-1 K^-1] END REFERENCE STATE: Option = Specified Point Reference Specific Enthalpy = 0 [J/kg] Reference Specific Entropy = 0 [J/kg/K] Reference Temperature = 25 [C] END THERMAL CONDUCTIVITY: Option = Value Thermal Conductivity = 60.5 [W m^-1 K^-1] END ABSORPTION COEFFICIENT: Absorption Coefficient = 8 [m^-1] Option = Value END SCATTERING COEFFICIENT: Option = Value Scattering Coefficient = 0. [m^-1] END REFRACTIVE INDEX: Option = Value Refractive Index = 1.0 END END END END FLOW: Flow Analysis 1 SOLUTION UNITS: Angle Units = [rad] Length Units = [m] Mass Units = [kg] Solid Angle Units = [sr] Temperature Units = [K] Time Units = [s] END ANALYSIS TYPE: Option = Steady State EXTERNAL SOLVER COUPLING: Option = None END END DOMAIN: Cylinder Coord Frame = Coord 0 Domain Type = Solid Location = Cylinder BOUNDARY: Cylinder Default Boundary Type = WALL Location = F39.49,F42.49,F43.49,F44.49,F47.49,F48.49 BOUNDARY CONDITIONS: HEAT TRANSFER: Heat Transfer Coefficient = 5 [W m^-2 K^-1] Option = Heat Transfer Coefficient Outside Temperature = 20 [C] END THERMAL RADIATION: Diffuse Fraction = 1. Emissivity = 0.8 Option = Opaque END END END BOUNDARY: Default Fluid Solid Interface in Cylinder Side 1 Boundary Type = INTERFACE Location = F40.49,F41.49,F45.49,F46.49,F50.49,F52.49 BOUNDARY CONDITIONS: HEAT TRANSFER: Option = Conservative Interface Flux END THERMAL RADIATION: Diffuse Fraction = 1 Emissivity = 0.8 Option = Opaque END END END BOUNDARY: Default Solid Solid Interface in Cylinder Side 1 Boundary Type = INTERFACE Location = F51.49 BOUNDARY CONDITIONS: HEAT TRANSFER: Option = Conservative Interface Flux END THERMAL RADIATION: Diffuse Fraction = 1. Emissivity = 1 Option = Opaque END END END DOMAIN MODELS: DOMAIN MOTION: Option = Stationary END MESH DEFORMATION: Option = None END END SOLID DEFINITION: Solid 1 Material = Steel Option = Material Library MORPHOLOGY: Option = Continuous Solid END END SOLID MODELS: HEAT TRANSFER MODEL: Option = Thermal Energy END THERMAL RADIATION MODEL: Number of Histories = 250000 Option = Monte Carlo Radiation Transfer Mode = Surface to Surface SCATTERING MODEL: Option = None END SPECTRAL MODEL: Option = Gray END END END END DOMAIN: Fluid Coord Frame = Coord 0 Domain Type = Fluid Location = B61 BOUNDARY: Default Fluid Solid Interface Side 2 Boundary Type = INTERFACE Location = F62.61,F63.61,F64.61,F65.61,F69.61,F70.61 BOUNDARY CONDITIONS: HEAT TRANSFER: Option = Conservative Interface Flux END MASS AND MOMENTUM: Option = No Slip Wall END WALL ROUGHNESS: Option = Smooth Wall END END END BOUNDARY: Domain Interface 1 Side 2 Boundary Type = INTERFACE Location = F68.61 BOUNDARY CONDITIONS: HEAT TRANSFER: Option = Conservative Interface Flux END MASS AND MOMENTUM: Option = No Slip Wall END WALL ROUGHNESS: Option = Smooth Wall END END END BOUNDARY: Inlet Boundary Type = INLET Location = Inlet BOUNDARY CONDITIONS: FLOW DIRECTION: Option = Normal to Boundary Condition END FLOW REGIME: Option = Subsonic END HEAT TRANSFER: Option = Static Temperature Static Temperature = 20 [C] END MASS AND MOMENTUM: Mass Flow Rate = 0.00416 [kg s^-1] Mass Flow Rate Area = As Specified Option = Mass Flow Rate END TURBULENCE: Option = Medium Intensity and Eddy Viscosity Ratio END END END BOUNDARY: Outlet Boundary Type = OUTLET Location = Outlet BOUNDARY CONDITIONS: FLOW REGIME: Option = Subsonic END MASS AND MOMENTUM: Option = Average Static Pressure Pressure Profile Blend = 0.05 Relative Pressure = 1 [bar] END PRESSURE AVERAGING: Option = Average Over Whole Outlet END END END DOMAIN MODELS: BUOYANCY MODEL: Option = Non Buoyant END DOMAIN MOTION: Option = Stationary END MESH DEFORMATION: Option = None END REFERENCE PRESSURE: Reference Pressure = 1 [atm] END END FLUID DEFINITION: Fluid 1 Material = N2 at STP Option = Material Library MORPHOLOGY: Option = Continuous Fluid END END FLUID MODELS: COMBUSTION MODEL: Option = None END HEAT TRANSFER MODEL: Option = Thermal Energy END THERMAL RADIATION MODEL: Option = None END TURBULENCE MODEL: Option = SST END TURBULENT HEAT TRANSFER: TURBULENT FLUX CLOSURE: Option = Eddy Diffusivity Turbulent Prandtl Number = 0.9 END END TURBULENT WALL FUNCTIONS: Option = Automatic END END END DOMAIN: Glass Coord Frame = Coord 0 Domain Type = Solid Location = Glass BOUNDARY: Default Solid Solid Interface in Glass Side 2 Boundary Type = INTERFACE Location = F24.21 BOUNDARY CONDITIONS: HEAT TRANSFER: Option = Conservative Interface Flux END THERMAL RADIATION: Diffuse Fraction = 1. Emissivity = 1 Option = Opaque END END END BOUNDARY: Domain Interface 1 Side 1 Boundary Type = INTERFACE Location = F22.21 BOUNDARY CONDITIONS: HEAT TRANSFER: Option = Conservative Interface Flux END THERMAL RADIATION: Diffuse Fraction = 1. Emissivity = 0.8 Option = Opaque END END END BOUNDARY: Glass Default Boundary Type = WALL Location = F23.21 BOUNDARY CONDITIONS: HEAT TRANSFER: Heat Transfer Coefficient = 5 [W m^-2 K^-1] Option = Heat Transfer Coefficient Outside Temperature = 20 [C] END THERMAL RADIATION: Diffuse Fraction = 1. Emissivity = 0.8 Option = Opaque END END BOUNDARY SOURCE: SOURCES: RADIATION SOURCE: Radiation Source 1 Option = Directional Radiation Flux Radiation Flux = 1000000 [W m^-2] DIRECTION: Option = Cartesian Components Unit Vector X Component = 1 Unit Vector Y Component = 0 Unit Vector Z Component = 0 END END END END END DOMAIN MODELS: DOMAIN MOTION: Option = Stationary END MESH DEFORMATION: Option = None END END SOLID DEFINITION: Solid 1 Material = Glass Plate Option = Material Library MORPHOLOGY: Option = Continuous Solid END END SOLID MODELS: HEAT TRANSFER MODEL: Option = Thermal Energy END THERMAL RADIATION MODEL: Number of Histories = 250000 Option = Monte Carlo Radiation Transfer Mode = Surface to Surface SCATTERING MODEL: Option = None END SPECTRAL MODEL: Option = Gray END END END END DOMAIN: Ring Coord Frame = Coord 0 Domain Type = Solid Location = Ring BOUNDARY: Default Solid Solid Interface in Ring Side 1 Boundary Type = INTERFACE Location = F17.14 BOUNDARY CONDITIONS: HEAT TRANSFER: Option = Conservative Interface Flux END END END BOUNDARY: Default Solid Solid Interface in Ring Side 2 Boundary Type = INTERFACE Location = F15.14 BOUNDARY CONDITIONS: HEAT TRANSFER: Option = Conservative Interface Flux END END END BOUNDARY: Ring Default Boundary Type = WALL Location = F16.14,F18.14 BOUNDARY CONDITIONS: HEAT TRANSFER: Heat Transfer Coefficient = 5 [W m^-2 K^-1] Option = Heat Transfer Coefficient Outside Temperature = 20 [C] END END END DOMAIN MODELS: DOMAIN MOTION: Option = Stationary END MESH DEFORMATION: Option = None END END SOLID DEFINITION: Solid 1 Material = Steel Option = Material Library MORPHOLOGY: Option = Continuous Solid END END SOLID MODELS: HEAT TRANSFER MODEL: Option = Thermal Energy END THERMAL RADIATION MODEL: Option = None END END END DOMAIN INTERFACE: Default Fluid Solid Interface Boundary List1 = Default Fluid Solid Interface in Cylinder Side 1 Boundary List2 = Default Fluid Solid Interface Side 2 Interface Type = Fluid Solid INTERFACE MODELS: Option = General Connection FRAME CHANGE: Option = None END HEAT TRANSFER: Option = Conservative Interface Flux HEAT TRANSFER INTERFACE MODEL: Option = None END END PITCH CHANGE: Option = None END END MESH CONNECTION: Option = GGI END END DOMAIN INTERFACE: Default Solid Solid Interface Boundary List1 = Default Solid Solid Interface in Cylinder Side \ 1,Default Solid Solid Interface in Ring Side 1 Boundary List2 = Default Solid Solid Interface in Glass Side 2,Default \ Solid Solid Interface in Ring Side 2 Interface Type = Solid Solid INTERFACE MODELS: Option = General Connection FRAME CHANGE: Option = None END HEAT TRANSFER: Option = Conservative Interface Flux HEAT TRANSFER INTERFACE MODEL: Option = None END END PITCH CHANGE: Option = None END END MESH CONNECTION: Option = GGI END END DOMAIN INTERFACE: Domain Interface 1 Boundary List1 = Domain Interface 1 Side 1 Boundary List2 = Domain Interface 1 Side 2 Interface Type = Fluid Solid INTERFACE MODELS: Option = General Connection FRAME CHANGE: Option = None END HEAT TRANSFER: Option = Conservative Interface Flux HEAT TRANSFER INTERFACE MODEL: Option = None END END PITCH CHANGE: Option = None END END MESH CONNECTION: Option = Automatic END END OUTPUT CONTROL: MONITOR OBJECTS: MONITOR BALANCES: Option = Full END MONITOR FORCES: Option = Full END MONITOR PARTICLES: Option = Full END MONITOR POINT: Monitor Point 1 Cartesian Coordinates = 230 [m], 0 [m], 0 [m] Coord Frame = Coord 0 Option = Cartesian Coordinates Output Variables List = Temperature MONITOR LOCATION CONTROL: Interpolation Type = Nearest Vertex END POSITION UPDATE FREQUENCY: Option = Every Iteration END END MONITOR RESIDUALS: Option = Full END MONITOR TOTALS: Option = Full END END RESULTS: File Compression Level = Default Option = Standard END END SOLVER CONTROL: Turbulence Numerics = High Resolution ADVECTION SCHEME: Option = High Resolution END CONVERGENCE CONTROL: Length Scale Option = Conservative Maximum Number of Iterations = 1000 Minimum Number of Iterations = 1 Solid Timescale Control = Auto Timescale Timescale Control = Auto Timescale Timescale Factor = 1.0 END CONVERGENCE CRITERIA: Residual Target = 0.00001 Residual Type = RMS END DYNAMIC MODEL CONTROL: Global Dynamic Model Control = On END END END COMMAND FILE: Version = 16.2 Results Version = 16.2 END SIMULATION CONTROL: EXECUTION CONTROL: EXECUTABLE SELECTION: Double Precision = Yes END INTERPOLATOR STEP CONTROL: Runtime Priority = Standard MEMORY CONTROL: Memory Allocation Factor = 1.0 END END PARALLEL HOST LIBRARY: HOST DEFINITION: michaelpc Remote Host Name = MICHAEL-PC Host Architecture String = winnt-amd64 Installation Root = C:\Program Files\ANSYS Inc\v%v\CFX END END PARTITIONER STEP CONTROL: Multidomain Option = Automatic Runtime Priority = Standard EXECUTABLE SELECTION: Use Large Problem Partitioner = Off END MEMORY CONTROL: Memory Allocation Factor = 1.0 END PARTITION SMOOTHING: Maximum Partition Smoothing Sweeps = 100 Option = Smooth END PARTITIONING TYPE: MeTiS Type = k-way Option = MeTiS Partition Size Rule = Automatic Partition Weight Factors = 0.25000, 0.25000, 0.25000, 0.25000 END END RUN DEFINITION: Run Mode = Full Solver Input File = Fluid Flow CFX.def Solver Results File = C:/Users/Michael/Desktop/Ansys Infos/_BA/CFD \ Online question/CFD_pending/dp0_CFX_Solution/Fluid Flow CFX_001.res END SOLVER STEP CONTROL: Runtime Priority = Standard MEMORY CONTROL: Memory Allocation Factor = 1.0 END PARALLEL ENVIRONMENT: Number of Processes = 4 Start Method = Intel MPI Local Parallel Parallel Host List = michaelpc*4 END END END END |
|
August 29, 2016, 11:14 |
...
|
#3 |
New Member
Michael Kraus
Join Date: May 2016
Posts: 16
Rep Power: 10 |
+--------------------------------------------------------------------+
| Radiation Coarsening Information | +--------------------------------------------------------------------+ Domain Name : Cylinder Target coarsening rate = 162552 Number of fine grid elements = 162552 Number of radiation elements = 1 Actual coarsening rate = 162552 Domain Name : Glass Target coarsening rate = 3698 Number of fine grid elements = 3698 Number of radiation elements = 1 Actual coarsening rate = 3698 +--------------------------------------------------------------------+ | Mesh Statistics | +--------------------------------------------------------------------+ Domain Name : Fluid Total Number of Nodes = 31256 Total Number of Elements = 159128 Total Number of Tetrahedrons = 159128 Total Number of Faces = 17982 Domain Name : Cylinder Total Number of Nodes = 50041 Total Number of Elements = 162552 Total Number of Tetrahedrons = 121328 Total Number of Prisms = 40605 Total Number of Pyramids = 619 Total Number of Faces = 36858 Domain Name : Glass Total Number of Nodes = 5808 Total Number of Elements = 3698 Total Number of Hexahedrons = 3698 Total Number of Faces = 4042 Domain Name : Ring Total Number of Nodes = 1092 Total Number of Elements = 468 Total Number of Hexahedrons = 468 Total Number of Faces = 1092 Global Statistics : Global Number of Nodes = 88197 Global Number of Elements = 325846 Total Number of Tetrahedrons = 280456 Total Number of Prisms = 40605 Total Number of Hexahedrons = 4166 Total Number of Pyramids = 619 Global Number of Faces = 59974 Domain Interface Name : Default Fluid Solid Interface Discretization type = GGI Intersection type = Direct Non-overlap area fraction on side 1 = 1.72E-07 Non-overlap area fraction on side 2 = 1.68E-07 Domain Interface Name : Default Solid Solid Interface Discretization type = GGI Intersection type = Direct Non-overlap area fraction on side 1 = 1.19E-03 Non-overlap area fraction on side 2 = 2.01E-04 Domain Interface Name : Domain Interface 1 Discretization type = GGI Intersection type = Direct Non-overlap area fraction on side 1 = 1.19E-03 Non-overlap area fraction on side 2 = 4.18E-05 |
|
August 29, 2016, 11:15 |
...
|
#4 |
New Member
Michael Kraus
Join Date: May 2016
Posts: 16
Rep Power: 10 |
+--------------------------------------------------------------------+
| Iso-Partition Connection Statistics | +--------------------------------------------------------------------+ | Domains in Group | | Vertices | | | Smooth +---------+----------+----------+ | | Sweeps | Moves | <25% | <50% | +---------------------------+--------+---------+----------+----------+ | Fluid | 2 | 2 | 0 | 0 | | Cylinder,Ring,Glass, | 3 | 14 | 0 | 6 | +---------------------------+--------+---------+----------+----------+ +--------------------------------------------------------------------+ | Partitioning Information | +--------------------------------------------------------------------+ Partitioning information for domain: Fluid +------------------+------------------------+-----------------+ | Elements | Vertices | Faces | +------+------------------+------------------------+-----------------+ | Part | Number % | Number % %Ovlp | Number % | +------+------------------+------------------------+-----------------+ | Full | 159128 | 31256 | 17982 | +------+------------------+------------------------+-----------------+ | 1 | 58579 29.6 | 13670 30.5 42.2 | 9459 31.2 | | 2 | 42927 21.7 | 10278 22.9 30.9 | 8424 27.8 | | 3 | 44477 22.5 | 9668 21.6 18.4 | 6418 21.2 | | 4 | 51985 26.3 | 11171 24.9 25.1 | 6022 19.9 | +------+------------------+------------------------+-----------------+ | Min | 42927 21.7 | 9668 21.6 18.4 | 6022 19.9 | |(part)| ( 2)| ( 3 3)| ( 4)| +------+------------------+------------------------+-----------------+ | Max | 58579 29.6 | 13670 30.5 42.2 | 9459 31.2 | |(part)| ( 1)| ( 1 1)| ( 1)| +------+------------------+------------------------+-----------------+ | Ave | 49492 25.0 | 11197 25.0 29.2 | 7581 25.0 | +------+------------------+------------------------+-----------------+ | Sum | 197968 100.0 | 44787 100.0 | 30323 100.0 | +------+------------------+------------------------+-----------------+ Partitioning information for domains: Cylinder Ring Glass +------------------+------------------------+-----------------+ | Elements | Vertices | Faces | +------+------------------+------------------------+-----------------+ | Part | Number % | Number % %Ovlp | Number % | +------+------------------+------------------------+-----------------+ | Full | 166718 | 56941 | 41992 | +------+------------------+------------------------+-----------------+ | 1 | 64483 32.9 | 21761 28.5 33.9 | 15798 28.0 | | 2 | 41384 21.1 | 19401 25.5 34.2 | 15561 27.6 | | 3 | 45399 23.2 | 17085 22.4 11.4 | 12980 23.0 | | 4 | 44589 22.8 | 17984 23.6 18.5 | 12121 21.5 | +------+------------------+------------------------+-----------------+ | Min | 41384 21.1 | 17085 22.4 11.4 | 12121 21.5 | |(part)| ( 2)| ( 3 3)| ( 4)| +------+------------------+------------------------+-----------------+ | Max | 64483 32.9 | 21761 28.5 34.2 | 15798 28.0 | |(part)| ( 1)| ( 1 2)| ( 1)| +------+------------------+------------------------+-----------------+ | Ave | 48964 25.0 | 19058 25.0 24.5 | 14115 25.0 | +------+------------------+------------------------+-----------------+ | Sum | 195855 100.0 | 76231 100.0 | 56460 100.0 | +------+------------------+------------------------+-----------------+ +--------------------------------------------------------------------+ | Partitioning CPU-Time Requirements | +--------------------------------------------------------------------+ - Preparations 2.820E-01 seconds - Low-level mesh partitioning 9.300E-02 seconds - Gather zone interface information 8.100E-02 seconds - Global partitioning information 2.800E-02 seconds - Element and face partitioning information 5.900E-02 seconds - Vertex partitioning information 6.999E-03 seconds - Partitioning Smoothing 3.070E-01 seconds - Partitioning information compression 3.001E-03 seconds - Summed CPU-time for mesh partitioning 1.031E+00 seconds +--------------------------------------------------------------------+ | Job Information at End of Run | +--------------------------------------------------------------------+ Host computer: MICHAEL-PC (PID:7024) Job finished: Mon Aug 29 15:31:32 2016 Total wall clock time: 6.527E+00 seconds or: ( 0: 0: 0: 6.527 ) ( Days: Hours: Minutes: Seconds ) +--------------------------------------------------------------------+ | | | Solver | | | +--------------------------------------------------------------------+ +--------------------------------------------------------------------+ | | | ANSYS(R) CFX(R) Solver | | | | Release 16.2 | | Build 16.2 2015.06.29-10.01-134376 | | Mon Jun 29 11:05:13 GMTDT 2015 | | | | Executable Attributes | | | | double-64bit-int32-supfort-optimised-noprof-lcomp | | | | (C) 2015 ANSYS, Inc. | | | | All rights reserved. Unauthorized use, distribution or duplication | | is prohibited. This product is subject to U.S. laws governing | | export and re-export. For full Legal Notice, see documentation. | +--------------------------------------------------------------------+ +--------------------------------------------------------------------+ | Job Information at Start of Run | +--------------------------------------------------------------------+ Run mode: parallel run (Intel MPI) Job started: Mon Aug 29 15:31:33 2016 +--------------------------------------------------------------------+ | License Information | +--------------------------------------------------------------------+ License Cap: ANSYS CFX Solver (Max 128K Nodes) License Cap: Radiation License Cap: Parallel License ID: Michael-PC-Michael-4412-011334 +--------------------------------------------------------------------+ | Memory Allocated for Run (Actual usage may be less) | +--------------------------------------------------------------------+ Allocated storage in: Mwords Mbytes Partition | Real | Integer | Character | Logical | Double ----------+------------+------------+-----------+----------+---------- Minimum | 21.53 | 10.24 | 3.91 | 0.15 | 0.01 ( 3) | 164.25 | 39.05 | 3.73 | 0.14 | 0.06 ----------+------------+------------+-----------+----------+---------- Maximum | 29.53 | 13.18 | 3.91 | 0.15 | 0.01 ( 2) | 225.30 | 50.26 | 3.73 | 0.14 | 0.06 ----------+------------+------------+-----------+----------+---------- Average | 24.68 | 11.29 | 3.91 | 0.15 | 0.01 | 188.29 | 43.06 | 3.73 | 0.14 | 0.06 ----------+------------+------------+-----------+----------+---------- Total | 98.72 | 45.15 | 15.65 | 0.61 | 0.03 | 753.18 | 172.22 | 14.93 | 0.58 | 0.25 ----------+------------+------------+-----------+----------+---------- +--------------------------------------------------------------------+ | Host Memory Information (Mbytes) | +--------------------------------------------------------------------+ | Host | Npart | System | Allocated | % | +------------------------+-------+-------------+-------------+-------+ | MICHAEL-PC | 4 | 3981.56 | 941.16 | 23.64 | +------------------------+-------+-------------+-------------+-------+ +--------------------------------------------------------------------+ | ****** Notice ****** | | The Wall Heat Transfer Coefficient written to the results file for | | any turbulent phase with heat transfer is based on the turbulent | | wall function coefficient. It is consistent with the Wall Heat Flux| | the wall temperature, and the Wall Adjacent Temperature | | (near-wall temperature). If you would like it to be based on a | | user-specified bulk temperature instead, please set the expert | | parameter "tbulk for htc = <value>". | +--------------------------------------------------------------------+ |
|
August 29, 2016, 11:16 |
...
|
#5 |
New Member
Michael Kraus
Join Date: May 2016
Posts: 16
Rep Power: 10 |
+--------------------------------------------------------------------+
| Mesh Statistics | +--------------------------------------------------------------------+ | Domain Name | Orthog. Angle | Exp. Factor | Aspect Ratio | +----------------------+---------------+--------------+--------------+ | | Minimum [deg] | Maximum | Maximum | +----------------------+---------------+--------------+--------------+ | Fluid | 48.8 ok | 8 ok | 5 OK | | Cylinder | 46.6 ok | 12 ok | 6 OK | | Glass | 5.2 ! | 2 OK | 15 OK | | Ring | 88.8 OK | 1 OK | 2 OK | | Global | 5.2 ! | 12 ok | 15 OK | +----------------------+---------------+--------------+--------------+ | | %! %ok %OK | %! %ok %OK | %! %ok %OK | +----------------------+---------------+--------------+--------------+ | Fluid | 0 <1 100 | 0 <1 100 | 0 0 100 | | Cylinder | 0 <1 100 | 0 1 99 | 0 0 100 | | Glass | 2 11 87 | 0 0 100 | 0 0 100 | | Ring | 0 0 100 | 0 0 100 | 0 0 100 | | Global | <1 1 99 | 0 1 99 | 0 0 100 | +----------------------+---------------+--------------+--------------+ Domain Name : Fluid Total Number of Nodes = 31256 Total Number of Elements = 159128 Total Number of Tetrahedrons = 159128 Total Number of Faces = 17982 Domain Name : Cylinder Total Number of Nodes = 50041 Total Number of Elements = 162552 Total Number of Tetrahedrons = 121328 Total Number of Prisms = 40605 Total Number of Pyramids = 619 Total Number of Faces = 36858 Domain Name : Glass Total Number of Nodes = 5808 Total Number of Elements = 3698 Total Number of Hexahedrons = 3698 Total Number of Faces = 4042 Domain Name : Ring Total Number of Nodes = 1092 Total Number of Elements = 468 Total Number of Hexahedrons = 468 Total Number of Faces = 1092 Global Statistics : Global Number of Nodes = 88197 Global Number of Elements = 325846 Total Number of Tetrahedrons = 280456 Total Number of Prisms = 40605 Total Number of Hexahedrons = 4166 Total Number of Pyramids = 619 Global Number of Faces = 59974 Domain Interface Name : Default Fluid Solid Interface Discretization type = GGI Intersection type = Partitioner Non-overlap area fraction on side 1 = 1.72E-07 Non-overlap area fraction on side 2 = 1.68E-07 Domain Interface Name : Default Solid Solid Interface Discretization type = GGI Intersection type = Partitioner Non-overlap area fraction on side 1 = 1.19E-03 Non-overlap area fraction on side 2 = 2.01E-04 Domain Interface Name : Domain Interface 1 Discretization type = GGI Intersection type = Partitioner Non-overlap area fraction on side 1 = 1.19E-03 Non-overlap area fraction on side 2 = 4.18E-05 +--------------------------------------------------------------------+ | User Defined Monitor Information | +--------------------------------------------------------------------+ Monitor Point: Monitor Point 1 Domain: Fluid User specified location (x,y,z) : 2.300E+02, 0.000E+00, 0.000E+00 Valid variables from output variable list: Temperature +--------------------------------------------------------------------+ | Average Scale Information | +--------------------------------------------------------------------+ Domain Name : Fluid Global Length = 1.3261E-01 Minimum Extent = 1.2000E-01 Maximum Extent = 2.7382E-01 Density = 1.2500E+00 Dynamic Viscosity = 1.7700E-05 Velocity = 1.7293E+02 Advection Time = 7.6682E-04 Reynolds Number = 1.6194E+06 Thermal Conductivity = 2.5900E-02 Specific Heat Capacity at Constant Pressure = 1.0400E+03 Prandtl Number = 7.1073E-01 Domain Name : Cylinder Global Length = 1.1785E-01 Minimum Extent = 1.5000E-01 Maximum Extent = 2.7382E-01 Density = 7.8540E+03 Thermal Conductivity = 6.0500E+01 Specific Heat Capacity at Constant Pressure = 4.3400E+02 Thermal Diffusivity = 1.7749E-05 Average Diffusion Timescale = 7.8249E+02 Minimum Diffusion Timescale = 1.2677E+03 Maximum Diffusion Timescale = 4.2243E+03 Domain Name : Glass Global Length = 2.7244E-02 Minimum Extent = 3.1800E-03 Maximum Extent = 9.0000E-02 Density = 2.5000E+03 Thermal Conductivity = 1.4000E+00 Specific Heat Capacity at Constant Pressure = 7.5000E+02 Thermal Diffusivity = 7.4667E-07 Average Diffusion Timescale = 9.9407E+02 Minimum Diffusion Timescale = 1.3543E+01 Maximum Diffusion Timescale = 1.0848E+04 Domain Name : Ring Global Length = 3.2997E-02 Minimum Extent = 3.1800E-03 Maximum Extent = 1.5000E-01 Density = 7.8540E+03 Thermal Conductivity = 6.0500E+01 Specific Heat Capacity at Constant Pressure = 4.3400E+02 Thermal Diffusivity = 1.7749E-05 Average Diffusion Timescale = 6.1343E+01 Minimum Diffusion Timescale = 5.6974E-01 Maximum Diffusion Timescale = 1.2677E+03 +--------------------------------------------------------------------+ | Checking for Isolated Fluid Regions | +--------------------------------------------------------------------+ No isolated fluid regions were found. +--------------------------------------------------------------------+ | The Equations Solved in This Calculation | +--------------------------------------------------------------------+ Equations are given two labels: the individual name and a combined name used for combining residuals together. Residuals for multidomain problems are combined provided the domains are connected together and have the same domain type (solid or fluid/porous). If there are multiple groups of the same domain type, then the group residual is identified by the name of the first domain in the connected group. The individual and combined equation names are given below. Subsystem : Wall Scale Wallscale-Fluid --> Wallscale Subsystem : Momentum and Mass U-Mom-Fluid --> U-Mom V-Mom-Fluid --> V-Mom W-Mom-Fluid --> W-Mom P-Mass-Fluid --> P-Mass Subsystem : Thermal Radiation - 1 I-Radiation-Cylinder --> I-Radiation-Cylinder Subsystem : Thermal Radiation - 2 I-Radiation-Glass --> I-Radiation-Glass Subsystem : Heat Transfer H-Energy-Fluid --> H-Energy T-Energy-Cylinder --> T-Energy T-Energy-Glass --> T-Energy T-Energy-Ring --> T-Energy Subsystem : TurbKE and TurbFreq K-TurbKE-Fluid --> K-TurbKE O-TurbFreq-Fluid --> O-TurbFreq CFD Solver started: Mon Aug 29 15:31:40 2016 +--------------------------------------------------------------------+ | Convergence History | +--------------------------------------------------------------------+ ================================================== ==================== | Timescale Information | ---------------------------------------------------------------------- | Equation | Type | Timescale | +----------------------+-----------------------+---------------------+ | U-Mom-Fluid | Auto Timescale | 1.96494E-04 | | V-Mom-Fluid | Auto Timescale | 1.96494E-04 | | W-Mom-Fluid | Auto Timescale | 1.96494E-04 | +----------------------+-----------------------+---------------------+ | H-Energy-Fluid | Auto Timescale | 1.96494E-04 | | T-Energy-Cylinder | Auto Timescale | 7.82494E+02 | | T-Energy-Glass | Auto Timescale | 9.94075E+02 | | T-Energy-Ring | Auto Timescale | 6.13430E+01 | +----------------------+-----------------------+---------------------+ | K-TurbKE-Fluid | Auto Timescale | 1.96494E-04 | | O-TurbFreq-Fluid | Auto Timescale | 1.96494E-04 | +----------------------+-----------------------+---------------------+ ================================================== ==================== OUTER LOOP ITERATION = 1 CPU SECONDS = 2.998E+01 ---------------------------------------------------------------------- | Equation | Rate | RMS Res | Max Res | Linear Solution | +----------------------+------+---------+---------+------------------+ | Wallscale | 0.00 | 4.8E-03 | 2.5E-02 | 18.1 7.5E-02 OK| +----------------------+------+---------+---------+------------------+ | U-Mom | 0.00 | 5.7E-03 | 1.7E-02 | 6.5E-02 OK| | V-Mom | 0.00 | 1.0E-04 | 6.5E-04 | 7.8E+00 ok| | W-Mom | 0.00 | 5.6E-03 | 1.7E-02 | 1.5E-01 ok| | P-Mass | 0.00 | 1.7E-02 | 1.4E-01 | 8.6 4.1E-02 OK| +----------------------+------+---------+---------+------------------+ Slave: 2 ---------------------------------- Slave: 2 Error in subroutine FNDVAR : Slave: 2 Error finding variable RCOEF_SL1 Slave: 2 GETVAR originally called by subroutine get_SEMISS_CSBELG Parallel run: Received message from slave ----------------------------------------- Slave partition : 2 Slave routine : ErrAction Master location : Message Handler Message label : 001100279 Message follows below - : +--------------------------------------------------------------------+ | ERROR #001100279 has occurred in subroutine ErrAction. | | Message: | | Stopped in routine GV_ERROR | | | | | | | | | | | +--------------------------------------------------------------------+ +--------------------------------------------------------------------+ | ERROR #001100279 has occurred in subroutine MESG_RETRIEVE. | | Message: | | Stopping the run due to error(s) reported above | | | | | | | | | | | +--------------------------------------------------------------------+ +--------------------------------------------------------------------+ | An error has occurred in cfx5solve: | | | | The ANSYS CFX solver exited with return code 123. No results | | file has been created. | +--------------------------------------------------------------------+ End of solution stage. |
|
August 29, 2016, 20:57 |
|
#6 |
Super Moderator
Glenn Horrocks
Join Date: Mar 2009
Location: Sydney, Australia
Posts: 17,862
Rep Power: 144 |
Can you use the Discrete Transfer radiation model in this application? It is much easier to use them Monte Carlo.
Can you model the radiation load as just a thermal load on the surface it impinges on? In that case you don't need to do a radiation model and that simplifies things a lot. If you can't get this complex model to run then simplify it. Does the fluids and heat transfer run OK with no radiation model? Can you model radiation heat transfer between two plates and get the correct answer? Add the complex bits one at a time to make sure they are working before proceeding. |
|
August 30, 2016, 06:05 |
:)
|
#7 |
New Member
Michael Kraus
Join Date: May 2016
Posts: 16
Rep Power: 10 |
Hello Glenn,
thank you for your reply! "Can you use the Discrete Transfer radiation model in this application? It is much easier to use them Monte Carlo." - No, i cant select the DT radiation model for my solids, i can select it for my fluid if i activate radiation in my fluid domain (But i dont want radiation from my fluid) "Can you model the radiation load as just a thermal load on the surface it impinges on? In that case you don't need to do a radiation model and that simplifies things a lot. " - I want to examine the distribution of heat due to radiation (I want the correlation between incoming radiation flux and heat distribution on the wall) "If you can't get this complex model to run then simplify it. Does the fluids and heat transfer run OK with no radiation model? " - I run a simplify simulation. Fix surface-temperature from the Cylinder 500°C - ass you can see in the image, the heat transfair seems to work correct (i just do about 50 iterations there) "Can you model radiation heat transfer between two plates and get the correct answer? Add the complex bits one at a time to make sure they are working before proceeding." - Yes, i already simulate a simplyfied radiation in a cylinder - but just out of one material... Do i need to turn on the radiation option in my fluid domain to get the radiation from "the glass surface - through the N2 - to the wall?" Have you found other errors / notes? Thanks a lot! |
|
August 30, 2016, 08:07 |
|
#8 |
Super Moderator
Glenn Horrocks
Join Date: Mar 2009
Location: Sydney, Australia
Posts: 17,862
Rep Power: 144 |
I do not have time to check your file in detail.
Yes, you do need to turn radiation modelling on for all domains which the radiation passes through. |
|
August 30, 2016, 09:00 |
|
#9 |
New Member
Michael Kraus
Join Date: May 2016
Posts: 16
Rep Power: 10 |
Thanks a lot.
I will try it with other setting again. If anyone has an idea how to solve my problem - feel free to write |
|
August 30, 2016, 10:33 |
|
#10 |
Senior Member
Join Date: Jun 2009
Posts: 1,875
Rep Power: 33 |
From a quick glance to your setup, it seems the radiation never crosses any of the interfaces, it is always reflected/absorbed but never transmitted. Is that the intent of the model ?
For radiation to cross the domain interface, the boundary condition for thermal radiation should be "Conservative Interface Flux". Otherwise, the radiation effect at the interface is only by conduction once the temperature on one side is raised/lowered. Since the error message is coming from a partition in a parallel simulation, I wonder if the same model works in a serial run, does it ? If it does work in serial, and fails in parallel, you may need to contact ANSYS CFX support personnel. Hope the above helps, |
|
August 30, 2016, 12:01 |
|
#11 |
New Member
Michael Kraus
Join Date: May 2016
Posts: 16
Rep Power: 10 |
Hello opaque,
"From a quick glance to your setup, it seems the radiation never crosses any of the interfaces, it is always reflected/absorbed but never transmitted. Is that the intent of the model ?" - YES! it is - i had the same gues as you^^ But where can i set the transmissivity for the galss? I set the settings for the Solid(Radiation) and in the Boundary (diffus & absorp.) ... "Conservative Interface Flux" - is in all Interfaces "on" - Image: BC for details. I will try it in serial mode! Thanks a lot for you help! |
|
August 30, 2016, 14:40 |
|
#12 | |
Senior Member
Join Date: Jun 2009
Posts: 1,875
Rep Power: 33 |
The thermal radiation domain interface implemented in ANSYS CFX is the ideal case where the transmissivity is computed by the Fresnel equations based on the refractive indeces from both sides.
From the documentation Quote:
|
||
September 1, 2016, 06:15 |
|
#13 |
New Member
Michael Kraus
Join Date: May 2016
Posts: 16
Rep Power: 10 |
Thanks Opaque,
i think there is my problem: How i can do that.. ? I can set under Materials the: Refractive Index, Absorption Coefficient, Scattering Coefficient ..and for the Boundary´s: Emissivity and Diffuse Fraction. The surfaces are grey, so emissivity == absorptivity The surface is semi-transparent when ,0<T<1 transparent when T=1 For my Cylinder Solid (Steel): Reflexion(R) + Tranimission (T) + Absorption(A) = 1 R = 0.2, A = 0.8, T = 0 = opaque Sum = 1 For my Glass: R = 0, A = 0,01 --> T = 0,99 (?) For N2: Refractive Index = 1 (gas) Absoprtion & Scattering = 0 I think I still have not understood something fundamental in the radiation modeling... Do you have a good excample for radiation modeling? The Ansys Help (How to model radiation) doesnt help me a lot :/ Regards! |
|
Tags |
heat transfair, radiation, solar |
Thread Tools | Search this Thread |
Display Modes | |
|
|
Similar Threads | ||||
Thread | Thread Starter | Forum | Replies | Last Post |
Radiation in semi-transparent media with surface-to-surface model? | mpeppels | CFX | 11 | August 22, 2019 08:30 |
chtMultiRegionSimpleFoam: Thermal Conduction + Surface-To-Surface Radiation | Zeppo | OpenFOAM Running, Solving & CFD | 16 | May 18, 2017 19:04 |
Fluent Radiation/porous media | Schmitt pierre-Louis | FLUENT | 26 | September 1, 2016 11:29 |
Monte Carlo Simulation: H-Energy is not convergating & high Incident Radiation | volleyHC | CFX | 5 | April 3, 2016 06:41 |
Radiation Modeling | Chris89 | CFX | 20 | August 14, 2014 08:51 |