# [Gmsh] gmsh: how to match nodes from different geometries

 Register Blogs Members List Search Today's Posts Mark Forums Read

May 5, 2015, 05:49
gmsh: how to match nodes from different geometries
#1
Member

thomas
Join Date: Jul 2014
Posts: 50
Rep Power: 11
Dear all,

I have been having some troubles with matching the nodes from different geometries. I am working on a 2D simulation in OpenFOAM. Since I have this issue, all the further steps for making a suitable 3D mesh for a 2D case in OpenFOAM have been commented.
I copied the code and I also attached a picture of my case/issue.

Thank you very much in advance!

Code:
```el = 1;
pi = 3.14159265;
theta = (pi/4);
theta2 = (pi-pi/4);
u=20; //dimensión u
v=15; //dimensión v
z=40; //dimensión z
r = z;
r2 = r+u*Sin(theta);
r3 = 4; //Radius inlet, outlet

Point(1) = {0, 0, 0, el};
Point(2) = {0, 15, 0, el};
Point(3) = {r2*Cos(theta2), 15+r2*Sin(theta2), 0, el};
Point(4) = {r*Cos(theta2), 35+r*Sin(theta2), 0, el};
Point(5) = {0, 35, 0, el};
Point(6) = {0, 40, 0, el};
Point(7) = {120, 40, 0, el};
Point(8) = {120, 35, 0, el};
Point(9) = {160, 35, 0, el};
Point(10) = {160, 15, 0, el};
Point(11) = {120, 15, 0, el};
Point(12) = {120, 0, 0, el};
//Point(13) = {u*Cos(theta2)*Sin(theta), v+u*Sin(theta2)*Sin(theta), 0, el};
Point(14) = {120, 35+r3, 0};
Point(15) = {120+r3, 35, 0};
Point(16) = {120+r3, 35+r3, 0};
Point(17) = {120, 15-r3, 0};
Point(18) = {120+r3, 15, 0};
Point(19) = {120+r3, 15-r3, 0};

//Circle(21) = {14, 16, 15};
//Circle(22) = {17, 19, 18};
Line(1) = {1, 2};
Line(2) = {2, 3};
Line(3) = {3, 4};
Line(4) = {4, 5};
Line(5) = {5, 6};
Line(6) = {6, 7};
Line(7) = {7, 14};
Line(8) = {8, 15};
Line(9) = {9, 10};
Line(10) = {10, 18};
Line(11) = {11, 17};
Line(12) = {12, 1};
Line(13) = {2, 5};
Line(14) = {8, 11};
Line(15) = {8, 9};
Line(16) = {10, 11};
Line(17) = {15, 9};
Line(18) = {18, 11};
Line(19) = {14, 8};
Line(20) = {17, 12};
Line(27) = {14, 15};
Line(28) = {18, 17};
Line(23) = {11,12};
Line(24) = {7,8};
//Line(25) = {5,8};
//Line(26) = {2,11};

Line Loop(15) = {2, 3, 4, -13};
Plane Surface(16) = {15};
Line Loop(17) = {1, 13, 5, 6, 24, 14, 23, 12};
Plane Surface(18) = {17};
Line Loop(19) = {15, 9, 16, -14};
Plane Surface(20) = {19};
Line Loop(21) = {27, -8, -19};
Plane Surface(22) = {21};
Line Loop(23) = {28, -11, -18};
Plane Surface(24) = {23};

Transfinite Line {6,12} = 240; //x
Transfinite Line {1,23} = 30;  //v
Transfinite Line {3,13,9,14} = 40; //inlet y outlet
Transfinite Line {4,2} = 80; //z inlet
Transfinite Line {5,24} = 10;  //w
Transfinite Line {15,16} = 80; //z outlet
//Transfinite Line {19,11,8,18} = 9; // triangles
Transfinite Line {27, 28} = 15;
Transfinite Surface {16} = {2,3,4,5};
Transfinite Surface {18} = {1,6,7,12};
Transfinite Surface {20} = {11,8,9,10};
//Transfinite Surface {22} = {8,14,15};
//Transfinite Surface {24} = {11,18,17};
Recombine Surface{16,18,20};//22,24};

//Extrude {0, 0, 10} {
//  Surface{16, 18, 20, 22, 24};
//  Layers{1};
//  Recombine;
//}

//Physical Surface("back") = {18,42,16,20,24,22};
//Physical Surface("front") = {98,46,120,154,137};
//Physical Surface("inlet") = {37};
//Physical Surface("outlet") = {111};
//Physical Surface("walls") = {97,61,33,41,69,77,128,107,115,153,93};
//Physical Volume("interior") = {1, 2, 3, 4, 5};```
Attached Images
 snapshot4.jpg (36.9 KB, 12 views)