|
[Sponsors] |
Turbulent NACA 64-A010 stability response problem |
|
LinkBack | Thread Tools | Search this Thread | Display Modes |
December 1, 2020, 13:26 |
Turbulent NACA 64-A010 stability response problem
|
#1 |
New Member
Kevin Wittkowski
Join Date: Sep 2020
Posts: 14
Rep Power: 5 |
https://drive.google.com/drive/folde...Wb?usp=sharing
Dear all, I have a problem with my simulation: I would like to simulate the aeroelastic response of a NACA64A010 airfoil in viscous turbulent transonic flow (Ma=0.8, flutter speed index=1.5) Here you can find my configuration file Code:
% ------------- DIRECT, ADJOINT, AND LINEARIZED PROBLEM DEFINITION ------------% % % Physical governing equations (EULER, NAVIER_STOKES, % WAVE_EQUATION, HEAT_EQUATION, FEM_ELASTICITY, % POISSON_EQUATION) SOLVER= RANS % % Specify turbulent model (NONE, SA, SA_NEG, SST) KIND_TURB_MODEL= SA % % Mathematical problem (DIRECT, CONTINUOUS_ADJOINT) MATH_PROBLEM= DIRECT % % Write binary restart files (YES, NO) WRT_BINARY_RESTART= NO % % Read binary restart files (YES, NO) READ_BINARY_RESTART= NO % % % -------------------- COMPRESSIBLE FREE-STREAM DEFINITION --------------------% % % Flow non-dimensionalization (DIMENSIONAL, FREESTREAM_PRESS_EQ_ONE, % FREESTREAM_VEL_EQ_MACH, FREESTREAM_VEL_EQ_ONE) REF_DIMENSIONALIZATION= DIMENSIONAL % % Mach number (non-dimensional, based on the free-stream values) MACH_NUMBER= 0.8 % % Angle of attack (degrees, only for compressible flows) AOA= 0.0 % % Free-stream option to choose between density and temperature (default) for % initializing the solution (TEMPERATURE_FS, DENSITY_FS) INIT_OPTION=TD_CONDITIONS FREESTREAM_OPTION= TEMPERATURE_FS % % Free-stream temperature (288.15 K by default) FREESTREAM_TEMPERATURE= 1312.188 FREESTREAM_PRESSURE=315850.322 REYNOLDS_NUMBER=10000000 REYNOLDS_LENGTH=1.0 % % ---- IDEAL GAS, POLYTROPIC, VAN DER WAALS AND PENG ROBINSON CONSTANTS -------% % % Different gas model (STANDARD_AIR, IDEAL_GAS, VW_GAS, PR_GAS) FLUID_MODEL= IDEAL_GAS % % --------------------------- VISCOSITY MODEL ---------------------------------% % % Viscosity model (SUTHERLAND, CONSTANT_VISCOSITY). VISCOSITY_MODEL= SUTHERLAND % % --------------------------- THERMAL CONDUCTIVITY MODEL ----------------------% % % Conductivity model (CONSTANT_CONDUCTIVITY, CONSTANT_PRANDTL). CONDUCTIVITY_MODEL= CONSTANT_PRANDTL % % Laminar Prandtl number (0.72 (air), only for CONSTANT_PRANDTL) PRANDTL_LAM= 0.72 % % Turbulent Prandtl number (0.9 (air), only for CONSTANT_PRANDTL) PRANDTL_TURB= 0.90 % ---------------------- REFERENCE VALUE DEFINITION ---------------------------% % % Reference origin for moment computation (m or in) REF_ORIGIN_MOMENT_X = -0.5 REF_ORIGIN_MOMENT_Y = 0.00 REF_ORIGIN_MOMENT_Z = 0.00 % % Reference length for pitching, rolling, and yawing non-dimensional % moment (m or in) REF_LENGTH= 1.0 % % Reference area for force coefficients (0 implies automatic % calculation) (m^2 or in^2) REF_AREA= 1.0 % % ------------------------- UNSTEADY SIMULATION -------------------------------% % % Time domain TIME_DOMAIN=YES % % Unsteady simulation (NO, TIME_STEPPING, DUAL_TIME_STEPPING-1ST_ORDER, % DUAL_TIME_STEPPING-2ND_ORDER, SPECTRAL_METHOD) TIME_MARCHING= DUAL_TIME_STEPPING-2ND_ORDER % % Time Step for dual time stepping simulations (s) TIME_STEP= 0.00174532925199 % % 36 steps per period, based on the pitch natural frequency % % Total Physical Time for dual time stepping simulations (s) MAX_TIME= 100.0 % % Number of internal iterations (dual time method) INNER_ITER= 110 % ----------------------- DYNAMIC MESH DEFINITION -----------------------------% SURFACE_MOVEMENT= AEROELASTIC % % Motion mach number (non-dimensional). Used for initializing a viscous flow % with the Reynolds number and for computing force coeffs. with dynamic meshes. MACH_MOTION= 0.8 % % Moving wall boundary marker(s) (NONE = no marker, ignored for RIGID_MOTION) MARKER_MOVING= ( airfoil ) % -------------- AEROELASTIC SIMULATION (Typical Section Model) ---------------% % Activated by GRID_MOVEMENT_KIND option % % The flutter speed index (modifies the freestream condition in the solver) FLUTTER_SPEED_INDEX = 1.5 % % Natural frequency of the spring in the plunging direction (rad/s) PLUNGE_NATURAL_FREQUENCY = 100 % % Natural frequency of the spring in the pitching direction (rad/s) PITCH_NATURAL_FREQUENCY = 100 % % The airfoil mass ratio AIRFOIL_MASS_RATIO = 60 % % Distance in semichords by which the center of gravity lies behind % the elastic axis CG_LOCATION = 1.8 % % The radius of gyration squared (expressed in semichords) % of the typical section about the elastic axis RADIUS_GYRATION_SQUARED = 3.48 % % Solve the aeroelastic equations every given number of internal iterations AEROELASTIC_ITER = 3 % --------------------------- GUST SIMULATION ---------------------------------% % % Apply a wind gust (NO, YES) WIND_GUST = YES % % Type of gust (NONE, TOP_HAT, SINE, ONE_M_COSINE, VORTEX, EOG) GUST_TYPE = TOP_HAT % % Direction of the gust (X_DIR or Y_DIR) GUST_DIR = Y_DIR % % Gust wavelenght (meters) GUST_WAVELENGTH= 7.90876841815 % 1/4 of period based on the pitch natural frequency % % Number of gust periods GUST_PERIODS= 1.0 % % Gust amplitude (m/s) GUST_AMPL= 10.242 % Corresponds to 1 deg AoA. % % Time at which to begin the gust (sec) GUST_BEGIN_TIME= 0.0 % % Location at which the gust begins (meters) */ GUST_BEGIN_LOC= -7.90876841815 % -------------------- BOUNDARY CONDITION DEFINITION --------------------------% % % old was Euler wall boundary marker(s) (NONE = no marker) % old was MARKER_EULER= ( airfoil ) % % Navier-Stokes wall boundary marker(s) (NONE = no marker) MARKER_HEATFLUX= ( airfoil, 0.0) % % Far-field boundary marker(s) (NONE = no marker) MARKER_FAR= ( farfield ) % ------------------------ SURFACES IDENTIFICATION ----------------------------% % % Marker(s) of the surface in the surface flow solution file MARKER_PLOTTING = ( airfoil ) % % Marker(s) of the surface where the non-dimensional coefficients are evaluated. MARKER_MONITORING = ( airfoil ) % ------------- COMMON PARAMETERS DEFINING THE NUMERICAL METHOD ---------------% % % Numerical method for spatial gradients (GREEN_GAUSS, WEIGHTED_LEAST_SQUARES) NUM_METHOD_GRAD= GREEN_GAUSS % % CFL number (stating value for the adaptive CFL number) CFL_NUMBER= 4.0 % ------------------------ LINEAR SOLVER DEFINITION ---------------------------% % % Linear solver or smoother for implicit formulations (BCGSTAB, FGMRES, SMOOTHER) LINEAR_SOLVER= FGMRES % % Preconditioner of the Krylov linear solver (ILU, LU_SGS, LINELET, JACOBI) LINEAR_SOLVER_PREC= LU_SGS % % Minimum error of the linear solver for implicit formulations LINEAR_SOLVER_ERROR= 1E-4 % % Max number of iterations of the linear solver for the implicit formulation LINEAR_SOLVER_ITER= 5 % -------------------------- MULTIGRID PARAMETERS -----------------------------% % % Multi-grid levels (0 = no multi-grid) MGLEVEL= 3 % % Multi-grid cycle (V_CYCLE, W_CYCLE, FULLMG_CYCLE) MGCYCLE= W_CYCLE % % Multi-grid pre-smoothing level MG_PRE_SMOOTH= ( 1, 2, 3, 3 ) % % Multi-grid post-smoothing level MG_POST_SMOOTH= ( 0, 0, 0, 0 ) % % Jacobi implicit smoothing of the correction MG_CORRECTION_SMOOTH= ( 0, 0, 0, 0 ) % % Damping factor for the residual restriction MG_DAMP_RESTRICTION= 0.75 % % Damping factor for the correction prolongation MG_DAMP_PROLONGATION= 0.75 % -------------------- FLOW NUMERICAL METHOD DEFINITION -----------------------% % % Convective numerical method (JST, LAX-FRIEDRICH, CUSP, ROE, AUSM, HLLC, % TURKEL_PREC, MSW) CONV_NUM_METHOD_FLOW= JST % % Spatial numerical order integration (1ST_ORDER, 2ND_ORDER, 2ND_ORDER_LIMITER) MUSCL_FLOW= YES % % Slope limiter (VENKATAKRISHNAN, BARTH_JESPERSEN) SLOPE_LIMITER_FLOW= VENKATAKRISHNAN % % Entropy fix coefficient (0.0 implies no entropy fixing, 1.0 implies scalar % artificial dissipation) ENTROPY_FIX_COEFF= 0.001 % % 2nd and 4th order artificial dissipation coefficients JST_SENSOR_COEFF= ( 0.5, 0.02 ) % % Time discretization (RUNGE-KUTTA_EXPLICIT, EULER_IMPLICIT, EULER_EXPLICIT) TIME_DISCRE_FLOW= EULER_IMPLICIT % -------------------- TURBULENT NUMERICAL METHOD DEFINITION ------------------% % % Convective numerical method (SCALAR_UPWIND) CONV_NUM_METHOD_TURB= SCALAR_UPWIND % % Spatial numerical order integration (1ST_ORDER, 2ND_ORDER, 2ND_ORDER_LIMITER) % MUSCL_TURB= NO % % Time discretization (EULER_IMPLICIT) TIME_DISCRE_TURB= EULER_IMPLICIT % ------------------------ GRID DEFORMATION PARAMETERS ------------------------% % % Linear solver or smoother for implicit formulations (FGMRES, RESTARTED_FGMRES, BCGSTAB) DEFORM_LINEAR_SOLVER= FGMRES % % Preconditioner of the Krylov linear solver (ILU, LU_SGS, JACOBI) DEFORM_LINEAR_SOLVER_PREC= LU_SGS % % Number of smoothing iterations for mesh deformation DEFORM_LINEAR_SOLVER_ITER= 500 % % Number of nonlinear deformation iterations (surface deformation increments) DEFORM_NONLINEAR_ITER= 1 % % Print the residuals during mesh deformation to the console (YES, NO) DEFORM_CONSOLE_OUTPUT= NO % % Minimum residual criteria for the linear solver convergence of grid deformation DEFORM_LINEAR_SOLVER_ERROR= 1E-14 % % Type of element stiffness imposed for FEA mesh deformation (INVERSE_VOLUME, % WALL_DISTANCE, CONSTANT_STIFFNESS) DEFORM_STIFFNESS_TYPE= INVERSE_VOLUME % % Visualize the surface deformation (NO, YES) VISUALIZE_SURFACE_DEF= NO % % Visualize the volume deformation (NO, YES) VISUALIZE_VOLUME_DEF= NO % --------------------------- CONVERGENCE PARAMETERS --------------------------% % % Number of total iterations TIME_ITER= 720 % % Convergence criteria (CAUCHY, RESIDUAL) % CONV_CRITERIA= RESIDUAL % % Field to apply Cauchy Criterion to CONV_FIELD= REL_RMS_DENSITY % % Min value of the residual (log10 of the residual) CONV_RESIDUAL_MINVAL= -8 % % Start convergence criteria at iteration number CONV_STARTITER= 0 % % Number of elements to apply the criteria CONV_CAUCHY_ELEMS= 100 % % Epsilon to control the series convergence CONV_CAUCHY_EPS= 1E-10 % % ------------------------- INPUT/OUTPUT INFORMATION --------------------------% % % Mesh input file MESH_FILENAME= NACA64A010v6.su2 % % Mesh input file format (SU2, CGNS) MESH_FORMAT= SU2 % % Restart flow input file SOLUTION_FILENAME= solution_flow.dat % % Output file format (TECPLOT, TECPLOT_BINARY, PARAVIEW, % FIELDVIEW, FIELDVIEW_BINARY) TABULAR_FORMAT= CSV % % Output file convergence history (w/o extension) CONV_FILENAME= history % % Output file restart flow RESTART_FILENAME= restart_flow.dat % % Output file flow (w/o extension) variables VOLUME_FILENAME= flow % % Output file surface flow coefficient (w/o extension) SURFACE_FILENAME= surface_flow % % Writing solution file frequency WRT_SOL_FREQ= 1000 % OUTPUT_FILES= (RESTART,CSV,SURFACE_CSV,SURFACE_PARAVIEW,PARAVIEW) % Writing solution file frequency for physical time steps (dual time) WRT_SOL_FREQ_DUALTIME= 1000 % % Writing convergence history frequency WRT_CON_FREQ= 1 % % Writing convergence history frequency (dual time, only written to screen) WRT_CON_FREQ_DUALTIME= 1 % % Screen output SCREEN_OUTPUT= (TIME_ITER, INNER_ITER, RMS_DENSITY, RMS_ENERGY, LIFT, DRAG_ON_SURFACE, PLUNGE, PITCH) % % history output HISTORY_OUTPUT=(ITER, TIME_DOMAIN, REL_RMS_RES, RMS_RES, AERO_COEFF, TAVG_AERO_COEFF, CAUCHY,AEROELASTIC) Could you please help me? I really tried to change everything, but the problem is always there. Thank you in advance Kevin |
|
Tags |
aeroelastic, flutter, naca 64-a010, su2, unstable behaviour |
Thread Tools | Search this Thread |
Display Modes | |
|
|
Similar Threads | ||||
Thread | Thread Starter | Forum | Replies | Last Post |
SU2-7.0.1 on ubuntu 18.04 | hyunko | SU2 Installation | 7 | March 16, 2020 04:37 |
BouyantBussinesqSimpleFoam: BC definition and stability problem | mathew1105 | OpenFOAM Running, Solving & CFD | 0 | June 30, 2019 13:20 |
Having problem with turbulent flow over a forward facing step | eskadran | CFX | 0 | August 31, 2015 17:10 |
Problem of Turbulent Viscosity Ratio Limited | David Yang | FLUENT | 3 | June 3, 2002 06:13 |
the turbulent problem | Daejin, Kang | Main CFD Forum | 0 | November 16, 1998 10:52 |