# Optimization of airfoil Gradient based optimization SU2

 Register Blogs Members List Search Today's Posts Mark Forums Read March 30, 2023, 10:46 Optimization of airfoil Gradient based optimization SU2 #1 New Member   PURIWAT SUPAPITAKPONG Join Date: Mar 2023 Posts: 2 Rep Power: 0 I have a problem when I optimize the airfoil that is assign by my profressor. Could anyone please give me any suggestion how to solve it. After get optimization result, It gives me a weird shape at the leading-edge. Image is shown in the link below. https://ibb.co/dMfTQBS %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % SU2 configuration file % % Case description: Shape design of an RAE2822 (RANS) % % Author: Francisco Palacios % % Institution: Stanford University % % Date: 5/15/2013 % % File Version 5.0.0 "Raven" % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % ------------- DIRECT, ADJOINT, AND LINEARIZED PROBLEM DEFINITION ------------% % % Physical governing equations (EULER, NAVIER_STOKES, % WAVE_EQUATION, HEAT_EQUATION, FEM_ELASTICITY, % POISSON_EQUATION) SOLVER= EULER % % % Mathematical problem (DIRECT, CONTINUOUS_ADJOINT) MATH_PROBLEM= DIRECT % % Restart solution (NO, YES) RESTART_SOL= YES % -------------------- COMPRESSIBLE FREE-STREAM DEFINITION --------------------% % % Mach number (non-dimensional, based on the free-stream values) MACH_NUMBER= 2.0 % % Angle of attack (degrees, only for compressible flows) AOA= 4.0 % % Side-slip angle (degrees, only for compressible flows) SIDESLIP_ANGLE= 0.0 % Free-stream pressure (101325.0 N/m^2 by default) FREESTREAM_PRESSURE= 101300.0 % Free-stream temperature (288.15 K by default) FREESTREAM_TEMPERATURE= 288.15 % % % % -------------------------- CL DRIVER DEFINITION -----------------------------% % Activate fixed lift mode (specify a CL instead of AoA, NO/YES) FIXED_CL_MODE= YES % % Target coefficient of lift for fixed lift mode (0.80 by default) TARGET_CL= 0.6 % % Estimation of dCL/dAlpha (0.2 per degree by default) DCL_DALPHA= 0.2 % % Maximum number of iterations between AoA updates UPDATE_AOA_ITER_LIMIT= 100 % % Number of iterations to evaluate dCL/dAlpha at the end of the simulation ITER_DCL_DALPHA= 500 % % Evaluate dObjFunc/dCL during runtime (YES) or use the value stored in the % direct solution file (NO). EVAL_DOF_DCX= NO % ---------------------- REFERENCE VALUE DEFINITION ---------------------------% % % Reference origin for moment computation REF_ORIGIN_MOMENT_X = 0.25 REF_ORIGIN_MOMENT_Y = 0.00 REF_ORIGIN_MOMENT_Z = 0.00 % % Reference length for pitching, rolling, and yawing non-dimensional moment REF_LENGTH= 1.0 % % Reference area for force coefficients (0 implies automatic calculation) REF_AREA= 1.0 % -------------------- BOUNDARY CONDITION DEFINITION --------------------------% % Farfield boundary marker(s) (NONE = no marker) MARKER_FAR= ( FARFIELD ) % % Marker of the Euler boundary (0 = no marker) MARKER_EULER= ( AIRFOIL ) % % Marker(s) of the surface to be plotted or designed MARKER_PLOTTING= ( AIRFOIL ) % % Marker(s) of the surface where the functional (Cd, Cl, etc.) will be evaluated MARKER_MONITORING= ( AIRFOIL ) % ------------- COMMON PARAMETERS DEFINING THE NUMERICAL METHOD ---------------% % % Numerical method for spatial gradients (GREEN_GAUSS, WEIGHTED_LEAST_SQUARES) NUM_METHOD_GRAD= GREEN_GAUSS % % Courant-Friedrichs-Lewy condition of the finest grid CFL_NUMBER= 3.0 % % Adaptive CFL number (NO, YES) CFL_ADAPT= YES % % Parameters of the adaptive CFL number (factor down, factor up, CFL min value, % CFL max value ) CFL_ADAPT_PARAM= ( 0.1, 2.0, 50.0, 1e10 ) % % Runge-Kutta alpha coefficients RK_ALPHA_COEFF= ( 0.66667, 0.66667, 1.000000 ) % % Number of total iterations ITER= 9999 % % Objective function in gradient evaluation (DRAG, LIFT, SIDEFORCE, MOMENT_X, % MOMENT_Y, MOMENT_Z, EFFICIENCY) OBJECTIVE_FUNCTION= DRAG % ----------- SLOPE LIMITER AND DISSIPATION SENSOR DEFINITION -----------------% % % Monotonic Upwind Scheme for Conservation Laws (TVD) in the flow equations. % Required for 2nd order upwind schemes (NO, YES) MUSCL_FLOW= YES % % Slope limiter (NONE, VENKATAKRISHNAN, VENKATAKRISHNAN_WANG, % BARTH_JESPERSEN, VAN_ALBADA_EDGE) SLOPE_LIMITER_FLOW= VENKATAKRISHNAN % % Monotonic Upwind Scheme for Conservation Laws (TVD) in the turbulence equations. % Required for 2nd order upwind schemes (NO, YES) MUSCL_TURB= NO % % Slope limiter (NONE, VENKATAKRISHNAN, VENKATAKRISHNAN_WANG, % BARTH_JESPERSEN, VAN_ALBADA_EDGE) SLOPE_LIMITER_TURB= VENKATAKRISHNAN % % Monotonic Upwind Scheme for Conservation Laws (TVD) in the adjoint flow equations. % Required for 2nd order upwind schemes (NO, YES) MUSCL_ADJFLOW= YES % % Slope limiter (NONE, VENKATAKRISHNAN, BARTH_JESPERSEN, VAN_ALBADA_EDGE, % SHARP_EDGES, WALL_DISTANCE) SLOPE_LIMITER_ADJFLOW= VENKATAKRISHNAN % % Monotonic Upwind Scheme for Conservation Laws (TVD) in the turbulence adjoint equations. % Required for 2nd order upwind schemes (NO, YES) MUSCL_ADJTURB= NO % % Slope limiter (NONE, VENKATAKRISHNAN, BARTH_JESPERSEN, VAN_ALBADA_EDGE) SLOPE_LIMITER_ADJTURB= VENKATAKRISHNAN % % Coefficient for the Venkat's limiter (upwind scheme). A larger values decrease % the extent of limiting, values approaching zero cause % lower-order approximation to the solution (0.05 by default) VENKAT_LIMITER_COEFF= 0.05 % % Coefficient for the adjoint sharp edges limiter (3.0 by default). ADJ_SHARP_LIMITER_COEFF= 3.0 % % Freeze the value of the limiter after a number of iterations LIMITER_ITER= 9999 % % 1st order artificial dissipation coefficients for % the LaxFriedrichs method ( 0.15 by default ) LAX_SENSOR_COEFF= 0.15 % % 2nd and 4th order artificial dissipation coefficients for % the JST method ( 0.5, 0.02 by default ) JST_SENSOR_COEFF= ( 0.5, 0.02 ) % % 1st order artificial dissipation coefficients for % the adjoint LaxFriedrichs method ( 0.15 by default ) ADJ_LAX_SENSOR_COEFF= 0.15 % % 2nd, and 4th order artificial dissipation coefficients for % the adjoint JST method ( 0.5, 0.02 by default ) ADJ_JST_SENSOR_COEFF= ( 0.5, 0.02 ) % -------------------- FLOW NUMERICAL METHOD DEFINITION -----------------------% % % Convective numerical method (JST, LAX-FRIEDRICH, CUSP, ROE, AUSM, HLLC, % TURKEL_PREC, MSW) CONV_NUM_METHOD_FLOW= JST % % Time discretization (RUNGE-KUTTA_EXPLICIT, EULER_IMPLICIT, EULER_EXPLICIT) TIME_DISCRE_FLOW= EULER_IMPLICIT % -------------------- TURBULENT NUMERICAL METHOD DEFINITION ------------------% % % Convective numerical method (SCALAR_UPWIND) %CONV_NUM_METHOD_TURB= SCALAR_UPWIND % % Time discretization (EULER_IMPLICIT) %TIME_DISCRE_TURB= EULER_IMPLICIT % % Reduction factor of the CFL coefficient in the turbulence problem %CFL_REDUCTION_TURB= 1.0 % ---------------- ADJOINT-FLOW NUMERICAL METHOD DEFINITION -------------------% % % Convective numerical method (JST, LAX-FRIEDRICH, ROE) CONV_NUM_METHOD_ADJFLOW= JST % % Time discretization (RUNGE-KUTTA_EXPLICIT, EULER_IMPLICIT) TIME_DISCRE_ADJFLOW= EULER_IMPLICIT % % Relaxation coefficient RELAXATION_FACTOR_ADJOINT= 1.0 % % Reduction factor of the CFL coefficient in the adjoint problem CFL_REDUCTION_ADJFLOW= 0.8 % % Limit value for the adjoint variable LIMIT_ADJFLOW= 1E6 % ----------------------- GEOMETRY EVALUATION PARAMETERS ----------------------% % % Marker(s) of the surface where geometrical based function will be evaluated GEO_MARKER= ( AIRFOIL ) % % Description of the geometry to be analyzed (AIRFOIL, WING, FUSELAGE) GEO_DESCRIPTION= AIRFOIL % % Geometrical evaluation mode (FUNCTION, GRADIENT) GEO_MODE= FUNCTION % --------------------------- CONVERGENCE PARAMETERS --------------------------% % % Min value of the residual (log10 of the residual) CONV_RESIDUAL_MINVAL= -12 % % Start convergence criteria at iteration number CONV_STARTITER= 10 % % Number of elements to apply the criteria CONV_CAUCHY_ELEMS= 100 % % Epsilon to control the series convergence CONV_CAUCHY_EPS= 1E-6 % % ------------------------- INPUT/OUTPUT INFORMATION --------------------------% % % Mesh input file MESH_FILENAME= airfoil.su2 % % Mesh input file format (SU2, CGNS, NETCDF_ASCII) MESH_FORMAT= SU2 % % Mesh output file MESH_OUT_FILENAME= mesh_out.su2 % % Restart flow input file SOLUTION_FILENAME= solution_flow.dat % % Restart adjoint input file SOLUTION_ADJ_FILENAME= solution_adj.dat % % Output file format (PARAVIEW, TECPLOT, STL) TABULAR_FORMAT= CSV % % Output file convergence history (w/o extension) CONV_FILENAME= history % % Output file restart flow RESTART_FILENAME= restart_flow.dat % % Output file restart adjoint RESTART_ADJ_FILENAME= restart_adj.dat % % Output file flow (w/o extension) variables VOLUME_FILENAME= flow % % Output file adjoint (w/o extension) variables VOLUME_ADJ_FILENAME= adjoint % % Output objective function gradient (using continuous adjoint) GRAD_OBJFUNC_FILENAME= of_grad.dat % % Output file surface flow coefficient (w/o extension) SURFACE_FILENAME= surface_flow % % Output file surface adjoint coefficient (w/o extension) SURFACE_ADJ_FILENAME= surface_adjoint % % Writing solution file frequency OUTPUT_WRT_FREQ= 10000 % % % Screen output SCREEN_OUTPUT=(INNER_ITER, RMS_DENSITY, RMS_NU_TILDE, LIFT, DRAG) % % Output files OUTPUT_FILES= (RESTART, PARAVIEW, SURFACE_PARAVIEW, SURFACE_CSV) % ----------------------- DESIGN VARIABLE PARAMETERS --------------------------% % Kind of deformation (FFD_SETTING, FFD_CONTROL_POINT_2D, FFD_CAMBER_2D, FFD_THICKNESS_2D, % HICKS_HENNE, PARABOLIC, % NACA_4DIGITS, DISPLACEMENT, ROTATION, FFD_CONTROL_POINT, % FFD_NACELLE, FFD_TWIST, FFD_ROTATION, % FFD_CAMBER, FFD_THICKNESS, SURFACE_FILE) DV_KIND= HICKS_HENNE % % Marker of the surface to which we are going apply the shape deformation DV_MARKER= ( AIRFOIL ) % % Parameters of the shape deformation % - HICKS_HENNE ( Lower Surface (0)/Upper Surface (1)/Only one Surface (2), x_Loc ) % - NACA_4DIGITS ( 1st digit, 2nd digit, 3rd and 4th digit ) % - PARABOLIC ( Center, Thickness ) % - DISPLACEMENT ( x_Disp, y_Disp, z_Disp ) % - ROTATION ( x_Orig, y_Orig, z_Orig, x_End, y_End, z_End ) % - OBSTACLE ( Center, Bump size ) % - FFD_CONTROL_POINT ( FFD_BoxTag ID, i_Ind, j_Ind, k_Ind, x_Disp, y_Disp, z_Disp ) % - FFD_DIHEDRAL_ANGLE ( FFD_BoxTag ID, x_Orig, y_Orig, z_Orig, x_End, y_End, z_End ) % - FFD_TWIST_ANGLE ( FFD_BoxTag ID, x_Orig, y_Orig, z_Orig, x_End, y_End, z_End ) % - FFD_ROTATION ( FFD_BoxTag ID, x_Orig, y_Orig, z_Orig, x_End, y_End, z_End ) % - FFD_CAMBER ( FFD_BoxTag ID, i_Ind, j_Ind ) % - FFD_THICKNESS ( FFD_BoxTag ID, i_Ind, j_Ind ) % - FFD_VOLUME ( FFD_BoxTag ID, i_Ind, j_Ind ) DV_PARAM= ( 1, 0.5 ) % % New value of the shape deformation DV_VALUE= 0.01 % --------------------- OPTIMAL SHAPE DESIGN DEFINITION -----------------------% % Available Objective functions % DRAG, LIFT, SIDEFORCE, PRESSURE, FORCE_X, FORCE_Y, % FORCE_Z, MOMENT_X, MOMENT_Y, MOMENT_Z, EFFICIENCY, % EQUIVALENT_AREA, THRUST, TORQUE, FREESURFACE % Optimization objective function with scaling factor, separated by semicolons. % To include quadratic penalty function: use OPT_CONSTRAINT option syntax within the OPT_OBJECTIVE list. % ex= Objective * Scale OPT_OBJECTIVE= DRAG % % Optimization constraint functions with pushing factors (affects its value, not the gradient in the python scripts), separated by semicolons % ex= (Objective = Value ) * Scale, use '>','<','=' OPT_CONSTRAINT= ( MOMENT_Z < 0.093 ) * 0.001; ( AIRFOIL_THICKNESS > 0.03 ) * 0.001 % % Factor to reduce the norm of the gradient (affects the objective function and gradient in the python scripts) % In general, a norm of the gradient ~1E-6 is desired. OPT_GRADIENT_FACTOR= 1E-6 % % Factor to relax or accelerate the optimizer convergence (affects the line search in SU2_DEF) % In general, surface deformations of 0.01'' or 0.0001m are desirable OPT_RELAX_FACTOR= 1E2 % % Maximum number of iterations OPT_ITERATIONS= 100 % % Requested accuracy OPT_ACCURACY= 1E-10 % % Optimization bound (bounds the line search in SU2_DEF) OPT_LINE_SEARCH_BOUND= 1E6 % % Upper bound for each design variable (bound in the python optimizer) OPT_BOUND_UPPER= 1E10 % % Lower bound for each design variable (bound in the python optimizer) OPT_BOUND_LOWER= -1E10 % List of available design variables (Design variables are separated by semicolons) % % 2D Design variables % FFD_CONTROL_POINT_2D ( 19, Scale | Mark. List | FFD_BoxTag, i_Ind, j_Ind, x_Mov, y_Mov ) % FFD_CAMBER_2D ( 20, Scale | Mark. List | FFD_BoxTag, i_Ind ) % FFD_THICKNESS_2D ( 21, Scale | Mark. List | FFD_BoxTag, i_Ind ) % FFD_TWIST_2D ( 22, Scale | Mark. List | FFD_BoxTag, x_Orig, y_Orig ) % HICKS_HENNE ( 30, Scale | Mark. List | Lower(0)/Upper(1) side, x_Loc ) % ANGLE_OF_ATTACK ( 101, Scale | Mark. List | 1.0 ) % % 3D Design variables % FFD_CONTROL_POINT ( 11, Scale | Mark. List | FFD_BoxTag, i_Ind, j_Ind, k_Ind, x_Mov, y_Mov, z_Mov ) % FFD_NACELLE ( 12, Scale | Mark. List | FFD_BoxTag, rho_Ind, theta_Ind, phi_Ind, rho_Mov, phi_Mov ) % FFD_GULL ( 13, Scale | Mark. List | FFD_BoxTag, j_Ind ) % FFD_CAMBER ( 14, Scale | Mark. List | FFD_BoxTag, i_Ind, j_Ind ) % FFD_TWIST ( 15, Scale | Mark. List | FFD_BoxTag, j_Ind, x_Orig, y_Orig, z_Orig, x_End, y_End, z_End ) % FFD_THICKNESS ( 16, Scale | Mark. List | FFD_BoxTag, i_Ind, j_Ind ) % FFD_ROTATION ( 18, Scale | Mark. List | FFD_BoxTag, x_Axis, y_Axis, z_Axis, x_Turn, y_Turn, z_Turn ) % FFD_ANGLE_OF_ATTACK ( 24, Scale | Mark. List | FFD_BoxTag, 1.0 ) % % Global design variables % TRANSLATION ( 1, Scale | Mark. List | x_Disp, y_Disp, z_Disp ) % ROTATION ( 2, Scale | Mark. List | x_Axis, y_Axis, z_Axis, x_Turn, y_Turn, z_Turn ) % DEFINITION_DV= ( 30, 1.0 | AIRFOIL | 0, 0.05 ); ( 30, 1.0 | AIRFOIL | 0, 0.10 ); ( 30, 1.0 | AIRFOIL | 0, 0.15 ); ( 30, 1.0 | AIRFOIL | 0, 0.20 ); ( 30, 1.0 | AIRFOIL | 0, 0.25 ); ( 30, 1.0 | AIRFOIL | 0, 0.30 ); ( 30, 1.0 | AIRFOIL | 0, 0.35 ); ( 30, 1.0 | AIRFOIL | 0, 0.40 ); ( 30, 1.0 | AIRFOIL | 0, 0.45 ); ( 30, 1.0 | AIRFOIL | 0, 0.50 ); ( 30, 1.0 | AIRFOIL | 0, 0.55 ); ( 30, 1.0 | AIRFOIL | 0, 0.60 ); ( 30, 1.0 | AIRFOIL | 0, 0.65 ); ( 30, 1.0 | AIRFOIL | 0, 0.70 ); ( 30, 1.0 | AIRFOIL | 0, 0.75 ); ( 30, 1.0 | AIRFOIL | 0, 0.80 ); ( 30, 1.0 | AIRFOIL | 0, 0.85 ); ( 30, 1.0 | AIRFOIL | 0, 0.90 ); ( 30, 1.0 | AIRFOIL | 0, 0.95 ); ( 30, 1.0 | AIRFOIL | 1, 0.05 ); ( 30, 1.0 | AIRFOIL | 1, 0.10 ); ( 30, 1.0 | AIRFOIL | 1, 0.15 ); ( 30, 1.0 | AIRFOIL | 1, 0.20 ); ( 30, 1.0 | AIRFOIL | 1, 0.25 ); ( 30, 1.0 | AIRFOIL | 1, 0.30 ); ( 30, 1.0 | AIRFOIL | 1, 0.35 ); ( 30, 1.0 | AIRFOIL | 1, 0.40 ); ( 30, 1.0 | AIRFOIL | 1, 0.45 ); ( 30, 1.0 | AIRFOIL | 1, 0.50 ); ( 30, 1.0 | AIRFOIL | 1, 0.55 ); ( 30, 1.0 | AIRFOIL | 1, 0.60 ); ( 30, 1.0 | AIRFOIL | 1, 0.65 ); ( 30, 1.0 | AIRFOIL | 1, 0.70 ); ( 30, 1.0 | AIRFOIL | 1, 0.75 ); ( 30, 1.0 | AIRFOIL | 1, 0.80 ); ( 30, 1.0 | AIRFOIL | 1, 0.85 ); ( 30, 1.0 | AIRFOIL | 1, 0.90 ); ( 30, 1.0 | AIRFOIL | 1, 0.95 )  Tags airfoil optimization, su2 airfoil optimization Thread Tools Search this Thread Show Printable Version Email this Page Search this Thread: Advanced Search Display Modes Linear Mode Switch to Hybrid Mode Switch to Threaded Mode Posting Rules You may not post new threads You may not post replies You may not post attachments You may not edit your posts BB code is On Smilies are On [IMG] code is On HTML code is OffTrackbacks are Off Pingbacks are On Refbacks are On Forum Rules Similar Threads Thread Thread Starter Forum Replies Last Post bornax SU2 Shape Design 4 July 25, 2022 20:56 lbfhappy SU2 Shape Design 6 April 4, 2018 23:50 Dan1788 OpenFOAM Running, Solving & CFD 37 December 26, 2017 14:42 Anirudh_Deodhar Fluent UDF and Scheme Programming 1 October 25, 2013 05:43 enigma FLUENT 4 July 15, 2010 17:36

All times are GMT -4. The time now is 09:58.