CFD Online Logo CFD Online URL
www.cfd-online.com
[Sponsors]
Home > Forums > General Forums > Main CFD Forum

Odd behaviour of the length

Register Blogs Community New Posts Updated Threads Search

Reply
 
LinkBack Thread Tools Search this Thread Display Modes
Old   January 19, 2024, 12:24
Default Odd behaviour of the length
  #1
Senior Member
 
Matthew
Join Date: Mar 2022
Location: United Kingdom
Posts: 175
Rep Power: 4
hunt_mat is on a distinguished road
I am examining a 1D rod using mass co-ordinates under the effect of gravity. I have the rods on their end so that gravity will assist it. The equations are specific volume\nu and u, the velocity. The mass co-ordinate is given by:
h=\int_{0}^{x}\rho(t,s)ds
The equations are then:
\frac{\partial\nu}{\partial t}=\frac{\partial u}{\partial h}
\frac{\partial u}{\partial t}=\frac{\partial}{\partial h}\left(\frac{\zeta(\nu)}{\nu}\frac{\partial u}{\partial h}\right)-g\nu

I'm unsure about what should happen. For the application, the length should monotonically decrease. Do you have any idea what's going on?
Code:
%this code solves the following system of equations:
%v_t=u_h
%u_t=(zeta/v*u_h)_h
%dX/dt=u
%h is defined by h_x=1/v, and X is the new position of the interfacial
%points
%The boundary conditions for u is u(t,0)=0, u_h(t,1)=-v(t,1)
%The BC's for v, can be derived from ones on u. 
%here u is the velocity, and v is the specific volume defined as 1/rho, where rho is the density 
%The system is in conservative form, and the finite volume method is the best method for these types of equations 
clear;clc;
S=struct;
%---define physical constants 
N=200; %This is the number of cells in the simulation
S.N=N;
S.alpha=0.2;
c_p=1; %heat capacity.
rho_half(1:N)=0.6; %This is the initial density
eta_0=0.005; 
S.eta=eta_0;
M=300; %This is the number of points in the time domain.
%---Set up geometry
x=linspace(0,1,N+1); %Initial spacing of the cell interfaces and ends.
dx=x(2); %initial lengths of cells
t=linspace(0,300,M); % This is the time of integration
L=zeros(M,1); %The length of the of the piece
L(1)=1; %Initial length
dt=t(2); %time increment
S.dt=dt;
mu=dt/dx^2;

%---Set up of variables
nu=zeros(M,N); %The specific volume =1/density
u=zeros(M,N); %The speed of the material
X=zeros(M,N+1); %The position of cell interfaces
X(1,:)=x; 

%---The solution of the system will be done via Newton-Raphson. The two
%variables v and u will be put into one vector y=[v u]' 
y_old=zeros(1,2*N); %This is the initial vector used.
nu(1,:)=1./rho_half; %Initial specific volume
y_old(1:N)=nu(1,:);
%v(1,:)=y_old(N+1:2*N);
theta=0.5-1/(12*mu); %This will meximise the timestep.
rho_0=zeros(1,N+1); %This sets up the calculation for h to begin with.
%This interpolates the density from the cell centres to cell boundaries.
rho_0(2:N)=0.5*(rho_half(1,N-1)+rho_half(2:N));
rho_0(1)=1.5*rho_half(1)-0.5*rho_half(2);
rho_0(N+1)=1.5*rho_half(N)-0.5*rho_half(N-1);
h=cumtrapz(x,rho_0); %calculates h, which is used throughout the timesteps.
nu_m(1:N)=1; %This is the matal powder density, the maximum possible density.
S.nu_m=nu_m;
dh=diff(h); %This is used to approximate the derivative
S.dh=dh;
tol=1e-5; %Tolerance on the Newton-Raphson method.
dx=diff(x);

for i=2:M
    y_init=1.001*y_old; %This is an initial guess for the new solution forbased upon the previous timestep solution
    y = Newton(tol,y_old,y_init,theta,S); %call the Newton Raphson routine
    nu(i,:)=y(1:N); %First N entries are the specific volume
    u(i,:)=y(N+1:2*N); %the second entries are the velocities
    %Compute the new grid
    dX=dh.*nu(i,:); %The mass in each cell in constant, use density*length=mass to compute the new length of the cell
    X(i,2:N+1)=cumsum(dX); %x(2:N+1)-(dx-dX); %Update the Eulerian co-ordinates. 
    L(i)=X(i,N+1); %The length of the rod is the last entry
    y_old=y; %Set the new solution as the old one.
end

plot(t,L)
r_half=1./nu(end,:);
X_half=0.5*(X(end,1:N)+X(end,2:N+1));
r=interp1(X_half,r_half,X(end,:));
v=interp1(X_half,u(end,:),X(end,:));
figure;
plot(X(end,:),r);
xlabel('X(t)')
ylabel('Density');
figure;
plot(X(end,:),v);
xlabel('X(t)')
ylabel('Velocity');
% function y=mass_flux(nu,u)
% global N
% global dh
% y=zeros(1,N+1);
% y(2:N)=0.5*(u(2:N)+u(1,N-1));
% y(N+1)=u(N)-0.25*dh(N)*(3*nu(N)-nu(N-1));
% end

function y=flux(u,nu,S)
%This computes the fluxes required for the finite volume method 
N=S.N;
dh=S.dh;
nu_0=S.nu_m;
k=0.01;
a=0.01;
nu_end=1.5*nu(N)-0.5*nu(N-1);
nu_0_end=1.5*nu_0(N)-0.5*nu_0(N-1);
y=zeros(2,N+1); %This vector will store the fluxes for the mass and momentum
y(1,2:N)=0.5*(u(2:N)+u(1,N-1)); %Fluxes for the mass
y(1,N+1)=u(N)-(nu_end*k/zeta(nu_end,nu_0_end,S))*dh(N)/2;
nu_face=0.5*(nu(1:N-1)+nu(2:N)); %This is specific volume on the cell interface
y(2,2:N)=P_L(a,nu_face,nu_0(2:N))+(4*zeta(nu_face,nu_0(2:N),S)./nu_face).*((u(2:N)-u(1:N-1))./(dh(2:N)+dh(1:N-1))); %The flux for the momentum equation
%nu_L=1.5*nu(1)-0.5*nu(1); %the specific volume at the end
nu_L=nu(1)+dh(1)*(nu(2)-nu(1))/(dh(1)+dh(2)); %The matal powder specific density  
%nu_0_L=1.5*nu_0(1)-0.5*nu_0(1); 
nu_0_L=nu_0(1)+dh(1)*(nu_0(2)-nu_0(1))/(dh(1)+dh(2));
y(2,1)=P_L(a,nu_L,nu_0_L)+(zeta(nu_L,nu_0_L,S)/nu_L)*(2*(u(2)-u(1))/(dh(1)+dh(2))); %the fluxes at the end
y(2,N+1)=0;
end

function y=P_L(a,nu,nu_0) %This is the laplace pressure 

    x=1-nu_0./nu; %This is the porosity for an imcompressible metal powder
    y=a*(1-x).^2;

end

function y=zeta(z,nu_0,S)
eta_0=S.eta;
  x=1-nu_0./z;
  y = 2*(1-x).^3*eta_0./(3*x);
end

function [J] = jacobian(y_old,y,theta,S)
% Computes the Jacobian matrix of the function f(x)
% f: function handle that returns a vector of function values
% x: column vector of independent variables

% Number of function values and independent variables
n = length(y); % number of independent variables

% Initialize Jacobian matrix
eps=1e-5; % could be made better
J = zeros(n,n);
T=zeros(1,n);
for i=1:n
    T(i)=1;
    fPlus = sintering_RHS(y_old,y+eps*T,theta,S);
    fMinus = sintering_RHS(y_old,y-eps*T,theta,S);
    J(:,i) = (fPlus-fMinus)/(2*eps);
    T(i)=0;
end
end

function f=sintering_RHS(y_0,y,theta,S)
%the vector f has the stencil for each cell for both the mass and momentum
nu_m=S.nu_m;
dt=S.dt;
N=floor(length(y)/2);
f=zeros(1,2*N);
flux_1=flux(y(N+1:2*N),y(1:N),S); %This is flux at timestep i 
flux_0=flux(y_0(N+1:2*N),y_0(1:N),S); %this is the flux at timestep i-1
f_mass=flux_1(1,:);
f_mom=flux_1(2,:);
f_mass_0=flux_0(1,:);
f_mom_0=flux_0(2,:);
f(1:N)=y(1:N)-y_0(1:N)-dt*theta*(f_mass(2:N+1)-f_mass(1:N))-(1-theta)*dt*(f_mass_0(2:N+1)-f_mass(1:N)); %These are the stencils coming from the system of equations 
f(N+1:2*N)=y(N+1:2*N)-y_0(N+1:2*N)-dt*theta*(f_mom(2:N+1)-f_mom(1:N)-S.alpha*y(1:N))-(1-theta)*dt*(f_mom_0(2:N+1)-f_mom_0(1:N)+S.alpha*y_0(1:N));
f(1)=y(1)-y(2);
end

function [y] = Newton(tol,y_old,y0,theta,S)
    iter = 0;
    maxiter = 10;
    error=10;
    J0 = jacobian(y_old,y0,theta,S); %Computes Jacobian
    J_inv=inv(J0);
    %[L,U] = lu(J0);
    while (error > tol) && (iter < maxiter)
        %J0 = jacobian(y_old,y0,theta); %Computes Jacobian
        f_old=sintering_RHS(y_old,y0,theta,S); %Computes the old f
        delta_y = -J_inv*f_old'; %Computes the differencebetween old and new guesses 
        y = y0 + delta_y'; %the new guess
        error=norm(sintering_RHS(y0,y,theta,S)); %computes the error, the error should be very small
        y0 = y;  
        
        iter = iter + 1; %Updates the iteration
%         fprintf('Iteration %i, norm = %.2f\n', iter, error)
    end
end
Attached Images
File Type: jpg density_result.jpg (13.8 KB, 7 views)
File Type: jpg length_result.jpg (13.4 KB, 7 views)
hunt_mat is offline   Reply With Quote

Reply

Tags
cfd


Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is Off
Trackbacks are Off
Pingbacks are On
Refbacks are On


Similar Threads
Thread Thread Starter Forum Replies Last Post
Conflicting length scale definition jonasa97 CFX 12 February 4, 2023 14:38
Odd behaviour in circuitBoardCooling sturgeon OpenFOAM Running, Solving & CFD 3 April 26, 2018 08:22
Odd residual behaviour for Two Layer K Epsilon dvcauwe Main CFD Forum 1 March 7, 2012 05:47
extrudeMesh - odd behaviour grjmell OpenFOAM 0 September 20, 2011 08:41
Odd behaviour in wigleyHull in OF 2.0 msbealo OpenFOAM Running, Solving & CFD 0 July 16, 2011 05:53


All times are GMT -4. The time now is 19:35.