CFD Online Logo CFD Online URL
www.cfd-online.com
[Sponsors]
Home > Forums

NuTBox

Register Blogs Members List Search Today's Posts Mark Forums Read

Old

2 Easy MPI pieces

Posted May 7, 2022 at 18:03 by sbaffini (NuTBox)
Updated May 9, 2022 at 17:32 by sbaffini

Anyone who has a minimum working experience with MPI (the Message Passing Interface for distributed parallel computing) has certainly had the chance to meet certain coding patterns multiple times, especially if working with a CFD (or any other computational physics like) code.

Regrettably, MPI and parallel distributed computing is one of those areas where textbooks and online examples (even SO) are largely useless, as most (if not all) of them just simply go into the details of how...
sbaffini's Avatar
Senior Member
Posted in Uncategorized
Views 76 Comments 0 sbaffini is offline Edit Tags
Old

Closing on wall functions - part 8: coupled/thin wall boundary conditions

Posted April 27, 2022 at 08:37 by sbaffini (NuTBox)
Updated May 16, 2022 at 11:51 by sbaffini

It might happen that wall functions for temperature or scalars are needed when the assigned boundary condition is not simply the assigned flux or temperature/scalar, but rather a more complex one. One example is when the wall is a coupled one, with either a fluid or a solid on the other side, or it has some thickness, possibly with source terms in it and, say, radiation or convective boundary conditions assigned on the other side, or maybe some other combination of the above.

In all...
sbaffini's Avatar
Senior Member
Posted in Uncategorized
Views 86 Comments 0 sbaffini is offline Edit Tags
Old

Closing on wall functions - part 7: starting from a profile

Posted April 26, 2022 at 12:12 by sbaffini (NuTBox)
Updated April 27, 2022 at 18:57 by sbaffini

It might happens that one doesn't have a turbulent viscosity profile but actually has just an equilibrium profile for velocity or temperature. More specifically:

T^+ = Pr \left(\frac{{s_T^{-1}}^+}{y^+}\right)  y^+

with its obvious extension to the velocity case. In order to go back to the framework presented here one should notice that:

\frac{d}{dy^+}\left({s_T^{-1}}^+\right) = \frac{1}{1+\frac{Pr}{Pr_t}\frac{\mu_t}{\mu}}...
sbaffini's Avatar
Senior Member
Posted in Uncategorized
Views 62 Comments 0 sbaffini is offline Edit Tags
Old

Closing on wall functions - part 6: viscous dissipation

Posted April 24, 2022 at 10:20 by sbaffini (NuTBox)
Updated May 18, 2022 at 10:07 by sbaffini

One thing which is missing in the previous derivations is the viscous dissipation term in the temperature equation. Let's reconsider the initial temperature equation when it is present:

\frac{d}{dy}\left[C_p\left(\frac{\mu}{Pr}+\frac{\mu_t}{Pr_t}\right)\frac{dT}{dy}\right]=F_T - \frac{d}{dy}\left[\left(\mu+\mu_t\right)U\frac{dU}{dy}\right]

A first integration leads to:

\left(\frac{C_p \mu}{Pr}\right)\left(1+\frac{Pr}{Pr_t}\frac{\mu_t}{\mu}\right)\frac{dT}{dy}=q_w+...
sbaffini's Avatar
Senior Member
Posted in Uncategorized
Views 97 Comments 0 sbaffini is offline Edit Tags
Old

Closing on wall functions - part 5: testing scripts

Posted April 23, 2022 at 21:26 by sbaffini (NuTBox)
Updated April 26, 2022 at 17:00 by sbaffini

I provide here a set of MATLAB scripts to test all the claims made in the first 4 parts.

The first group of scripts is actually made of functions, that you are not supposed to directly call or modify:
  • muskersp.m: returns \left(\frac{{s_{U,T}^i}^+}{{y^+}^{i+2}}\right), \left(\frac{{p^i}^+}{{y^+}^{i+2}}\right) and {q^i}^+ as shown here. It only works for N up to 0 (constant non equilibrium terms)
  • standardsp.m: returns the same quantities but for the standard wall function
...
Attached Files
File Type: zip wallfunction.zip (14.2 KB, 51 views)
sbaffini's Avatar
Senior Member
Posted in Uncategorized
Views 67 Comments 0 sbaffini is offline Edit Tags

All times are GMT -4. The time now is 16:47.