# SST k-omega model

### From CFD-Wiki

Malkavian GT (Talk | contribs) m |
|||

(3 intermediate revisions not shown) | |||

Line 1: | Line 1: | ||

{{Turbulence modeling}} | {{Turbulence modeling}} | ||

- | The SST k-ω turbulence model [Menter 1993] is a [[Two equation turbulence models|two-equation]] [[Eddy viscosity|eddy-viscosity]] model which has become very popular. The SST formulation combines the best of two worlds. The use of a k-ω formulation in the inner parts of the boundary layer makes the model directly usable all the way down to the wall through the | + | The SST k-ω turbulence model [Menter 1993] is a [[Two equation turbulence models|two-equation]] [[Eddy viscosity|eddy-viscosity]] model which has become very popular. The shear stress transport (SST) formulation combines the best of two worlds. The use of a k-ω formulation in the inner parts of the boundary layer makes the model directly usable all the way down to the wall through the viscous sub-layer, hence the SST k-ω model can be used as a [[Low-Re turbulence model]] without any extra damping functions. The SST formulation also switches to a k-ε behaviour in the free-stream and thereby avoids the common k-ω problem that the model is too sensitive to the [[Turbulence free-stream boundary conditions|inlet free-stream turbulence properties]]. Authors who use the SST k-ω model often merit it for its good behaviour in adverse pressure gradients and separating flow. The SST k-ω model does produce a bit too large turbulence levels in regions with large normal strain, like stagnation regions and regions with strong acceleration. This tendency is much less pronounced than with a normal k-ε model though. |

==Kinematic Eddy Viscosity == | ==Kinematic Eddy Viscosity == | ||

:<math> | :<math> | ||

- | \nu _T = {a_1 k \over \mbox{max}(a_1 \omega, | + | \nu _T = {a_1 k \over \mbox{max}(a_1 \omega, S F_2) } |

</math> | </math> | ||

Line 25: | Line 25: | ||

:<math> | :<math> | ||

- | P_k=\mbox{min} \left(\tau _{ij} {{\partial U_i } \over {\partial x_j }} , | + | P_k=\mbox{min} \left(\tau _{ij} {{\partial U_i } \over {\partial x_j }} , 10\beta^* k \omega \right) |

</math> | </math> | ||

Line 63: | Line 63: | ||

#{{reference-paper|author=Menter, F. R.|year=1993|title=Zonal Two Equation k-ω Turbulence Models for Aerodynamic Flows|rest=AIAA Paper 93-2906}} | #{{reference-paper|author=Menter, F. R.|year=1993|title=Zonal Two Equation k-ω Turbulence Models for Aerodynamic Flows|rest=AIAA Paper 93-2906}} | ||

- | #{{reference-paper|author=Menter, F. R. |year=1994|title=Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications|rest=AIAA Journal, vol. 32, pp. | + | #{{reference-paper|author=Menter, F. R. |year=1994|title=Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications|rest=AIAA Journal, vol. 32, no 8. pp. 1598-1605}} |

[[Category:Turbulence models]] | [[Category:Turbulence models]] |

## Latest revision as of 21:36, 28 February 2011

The SST k-ω turbulence model [Menter 1993] is a two-equation eddy-viscosity model which has become very popular. The shear stress transport (SST) formulation combines the best of two worlds. The use of a k-ω formulation in the inner parts of the boundary layer makes the model directly usable all the way down to the wall through the viscous sub-layer, hence the SST k-ω model can be used as a Low-Re turbulence model without any extra damping functions. The SST formulation also switches to a k-ε behaviour in the free-stream and thereby avoids the common k-ω problem that the model is too sensitive to the inlet free-stream turbulence properties. Authors who use the SST k-ω model often merit it for its good behaviour in adverse pressure gradients and separating flow. The SST k-ω model does produce a bit too large turbulence levels in regions with large normal strain, like stagnation regions and regions with strong acceleration. This tendency is much less pronounced than with a normal k-ε model though.

## Contents |

## Kinematic Eddy Viscosity

## Turbulence Kinetic Energy

## Specific Dissipation Rate

## Closure Coefficients and Auxilary Relations

## References

**Menter, F. R. (1993)**, "Zonal Two Equation k-ω Turbulence Models for Aerodynamic Flows", AIAA Paper 93-2906.**Menter, F. R. (1994)**, "Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications", AIAA Journal, vol. 32, no 8. pp. 1598-1605.