# SST k-omega model

### From CFD-Wiki

Yucomefrom (Talk | contribs) |
m (Added explanation of SST ackronym: shear stress transport.) |
||

Line 1: | Line 1: | ||

{{Turbulence modeling}} | {{Turbulence modeling}} | ||

- | The SST k-ω turbulence model [Menter 1993] is a [[Two equation turbulence models|two-equation]] [[Eddy viscosity|eddy-viscosity]] model which has become very popular. The SST formulation combines the best of two worlds. The use of a k-ω formulation in the inner parts of the boundary layer makes the model directly usable all the way down to the wall through the viscous sub-layer, hence the SST k-ω model can be used as a [[Low-Re turbulence model]] without any extra damping functions. The SST formulation also switches to a k-ε behaviour in the free-stream and thereby avoids the common k-ω problem that the model is too sensitive to the [[Turbulence free-stream boundary conditions|inlet free-stream turbulence properties]]. Authors who use the SST k-ω model often merit it for its good behaviour in adverse pressure gradients and separating flow. The SST k-ω model does produce a bit too large turbulence levels in regions with large normal strain, like stagnation regions and regions with strong acceleration. This tendency is much less pronounced than with a normal k-ε model though. | + | The SST k-ω turbulence model [Menter 1993] is a [[Two equation turbulence models|two-equation]] [[Eddy viscosity|eddy-viscosity]] model which has become very popular. The shear stress transport (SST) formulation combines the best of two worlds. The use of a k-ω formulation in the inner parts of the boundary layer makes the model directly usable all the way down to the wall through the viscous sub-layer, hence the SST k-ω model can be used as a [[Low-Re turbulence model]] without any extra damping functions. The SST formulation also switches to a k-ε behaviour in the free-stream and thereby avoids the common k-ω problem that the model is too sensitive to the [[Turbulence free-stream boundary conditions|inlet free-stream turbulence properties]]. Authors who use the SST k-ω model often merit it for its good behaviour in adverse pressure gradients and separating flow. The SST k-ω model does produce a bit too large turbulence levels in regions with large normal strain, like stagnation regions and regions with strong acceleration. This tendency is much less pronounced than with a normal k-ε model though. |

==Kinematic Eddy Viscosity == | ==Kinematic Eddy Viscosity == |

## Revision as of 21:00, 17 February 2010

The SST k-ω turbulence model [Menter 1993] is a two-equation eddy-viscosity model which has become very popular. The shear stress transport (SST) formulation combines the best of two worlds. The use of a k-ω formulation in the inner parts of the boundary layer makes the model directly usable all the way down to the wall through the viscous sub-layer, hence the SST k-ω model can be used as a Low-Re turbulence model without any extra damping functions. The SST formulation also switches to a k-ε behaviour in the free-stream and thereby avoids the common k-ω problem that the model is too sensitive to the inlet free-stream turbulence properties. Authors who use the SST k-ω model often merit it for its good behaviour in adverse pressure gradients and separating flow. The SST k-ω model does produce a bit too large turbulence levels in regions with large normal strain, like stagnation regions and regions with strong acceleration. This tendency is much less pronounced than with a normal k-ε model though.

## Contents |

## Kinematic Eddy Viscosity

## Turbulence Kinetic Energy

## Specific Dissipation Rate

## Closure Coefficients and Auxilary Relations

## References

**Menter, F. R. (1993)**, "Zonal Two Equation k-ω Turbulence Models for Aerodynamic Flows", AIAA Paper 93-2906.**Menter, F. R. (1994)**, "Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications", AIAA Journal, vol. 32, pp. 269-289.